The Comparative Physiology of Respiratory Mechanisms


Book Description

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.




Respiratory Physiology of Newborn Mammals


Book Description

Respiratory Physiology of Newborn Mammals: A Comparative Perspective emphasizes common trends among mammalian species in an effort to extract general rules about both the structure and the mechanisms of neonatal respiration. Jacopo P. Mortola outlines the key aspects of developmental respiratory physiology in the perinatal period. Based on what is learned from interspecies comparisons, Mortola addresses the question of how pulmonary ventilation fulfills the metabolic requirements of the newborn infant. Exceptions to the rules illuminate adaptations to particular tasks or conditions. Each chapter concludes with interspecies comparisons and clinical implications for the medically or zoologically oriented reader. The combination of developmental and comparative perspectives offers an original contribution to the field of developmental physiology. The book is divided into five chapters: "Gestation and Birth," Metabolic and Ventilatory Requirements," "Mechanical Behavior of the Respiratory Pump," "Reflex Control of the Breathing Pattern," and "Changes in Temperature and Respiratory Gases." It will be of value to researchers, clinicians, and students interested in developmental physiology, comparative biology, and zoology, as well as neonatalogists and pediatric pulmonologists who are interested in alternative perspectives on current clinical practice.




Cardio-Respiratory Control in Vertebrates


Book Description

Hopefully, this book will be taken off of the shelf frequently to be studied carefully over many years. More than 40 researchers were involved in this project, which examines respiration, circulation, and metabolism from ?sh to the land vertebrates, including human beings. A breathable and stable atmosphere ?rst appeared about 500 million years ago. Oxygen levels are not stable in aquatic environments and exclusively water-breathing ?sh must still cope with the ever-changing levels of O 2 and with large temperature changes. This is re?ected in their sophisticated count- current systems, with high O extraction and internal and external O receptors. 2 2 The conquest for the terrestrial environment took place in the late Devonian period (355–359 million years ago), and recent discoveries portray the gradual transitional evolution of land vertebrates. The oxygen-rich and relatively stable atmospheric conditionsimpliedthatoxygen-sensingmechanismswererelativelysimpleandl- gain compared with acid–base regulation. Recently, physiology has expanded into related ?elds such as biochemistry, molecular biology, morphology and anatomy. In the light of the work in these ?elds, the introduction of DNA-based cladograms, which can be used to evaluate the likelihood of land vertebrates and lung?sh as a sister group, could explain why their cardio-respiratory control systems are similar. The diffusing capacity of a duck lung is 40 times higher than that of a toad or lung?sh. Certainly, some animals have evolved to rich high-performance levels.




The Comparative Physiology of Respiratory Mechanisms


Book Description

August Krogh, Nobel Laureate in Medicine and Biology, was one of the twentieth-century's great physiologists. This book, based on a series of lectures delivered at Swarthmore College in 1939, has since come to be recognized as a classic of exposition.




The Oxford Handbook of Evolutionary Medicine


Book Description

Medicine is grounded in the natural sciences, where biology stands out with regard to our understanding of human physiology and the conditions that cause dysfunction. Ironically though, evolutionary biology is a relatively disregarded field. One reason for this omission is that evolution is deemed a slow process. Indeed, the macroanatomical features of our species have changed very little in the last 300,000 years. A more detailed look, however, reveals that novel ecological contingencies, partly in relation to cultural evolution, have brought about subtle changes pertaining to metabolism and immunology, including adaptations to dietary innovations, as well as adaptations to the exposure to novel pathogens. Rapid pathogen evolution and evolution of cancer cells cause major problems for the immune system. Moreover, many adaptations to past ecologies have actually turned into risk factors for somatic disease and psychological disorder in our modern worlds (i.e. mismatch), among which epidemics of autoimmune diseases, cardiovascular diseases, diabetes and obesity, as well as several forms of cancer stand out. One could add depression, anxiety, and other psychiatric conditions to the list. The Oxford Handbook of Evolutionary Medicine is a compilation of up-to-date insights into the evolutionary history of ourselves as a species, exploring how and why our evolved design may convey vulnerability to disease. Written in a classic textbook style emphasising physiology and pathophysiology of all major organ systems, the Oxford Handbook of Evolutionary Medicine is valuable reading for students as well as scholars in the fields of medicine, biology, anthropology and psychology.




Respiratory Physiology of Vertebrates


Book Description

How do vertebrates get the oxygen they need, or even manage without it for shorter or longer periods of time? How do they sense oxygen, how do they take it up from water or air, and how do they transport it to their tissues? Respiratory system adaptations allow numerous vertebrates to thrive in extreme environments where oxygen availability is limited or where there is no oxygen at all. Written for students and researchers in comparative physiology, this authoritative summary of vertebrate respiratory physiology begins by exploring the fundamentals of oxygen sensing, uptake and transport in a textbook style. Subsequently, the reader is shown important examples of extreme respiratory performance, like diving and high altitude survival in mammals and birds, air breathing in fish, and those few vertebrates that can survive without any oxygen at all for several months, showing how evolution has solved the problem of life without oxygen.




Oxford Textbook of Critical Care


Book Description

Now in paperback, the second edition of the Oxford Textbook of Critical Care is a comprehensive multi-disciplinary text covering all aspects of adult intensive care management. Uniquely this text takes a problem-orientated approach providing a key resource for daily clinical issues in the intensive care unit. The text is organized into short topics allowing readers to rapidly access authoritative information on specific clinical problems. Each topic refers to basic physiological principles and provides up-to-date treatment advice supported by references to the most vital literature. Where international differences exist in clinical practice, authors cover alternative views. Key messages summarise each topic in order to aid quick review and decision making. Edited and written by an international group of recognized experts from many disciplines, the second edition of the Oxford Textbook of Critical Careprovides an up-to-date reference that is relevant for intensive care units and emergency departments globally. This volume is the definitive text for all health care providers, including physicians, nurses, respiratory therapists, and other allied health professionals who take care of critically ill patients.




Anatomy and Physiology


Book Description




How Tobacco Smoke Causes Disease


Book Description

This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.




Avian Physiology


Book Description

Since the publication of earlier editions, there has been The new edition has a number of new contributors, a considerable increase in research activity ina number who have written on the nervous system, sense organs, of areas, with each succeeding edition including new muscle, endocrines, reproduction, digestion and immu chapters and an expansion of knowledge in older chap nophysiology. Contributors from previous editions ters. have expanded their offerings considerably. The fourth edition contains two new chapters, on The authors are indebted to various investigators, muscle and immunophysiology, the latter an area journals and books for the many illustrations used. Indi where research on Aves has contributed significantly vidual acknowledgement is made in the legends and to our general knowledge of the subject. references. Preface to the 'Third Edition Since the publication of the first and second editions, pathways of birds and mammals. New contributors in there has been a considerable increase of research activ clude M. R. Fedde and T. B. Bolton, who have com ity in avian physiology in a number of areas, including pletely revised and expanded the chapters on respira endocrinology and reproduction, heart and circulation, tion and the nervous system, respectively, and J. G. respiration, temperature regulation, and to a lesser ex Rogers, Jr. , W. J. Mueller, H. Opel, and D. e. Meyer, who have made contributions to Chapters 2,16, 17, tent in some other areas. There appeared in 1972-1974 a four volume treatise and 19, respectively.