The Concurrent C Programming Language


Book Description

Concurrent C is a superset of C that provides parallel programming facilities such as those for the declaring and creating processes, for process synchronization and interaction, and for process termination and abortion. Concurrent C was designed for the effective utilization of multiprocessors and multicomputers. Concurrent C, as a compile-time option, also works with C++, an object-oriented superset of C.




C++ Concurrency in Action


Book Description

"This book should be on every C++ programmer’s desk. It’s clear, concise, and valuable." - Rob Green, Bowling Green State University This bestseller has been updated and revised to cover all the latest changes to C++ 14 and 17! C++ Concurrency in Action, Second Edition teaches you everything you need to write robust and elegant multithreaded applications in C++17. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology You choose C++ when your applications need to run fast. Well-designed concurrency makes them go even faster. C++ 17 delivers strong support for the multithreaded, multiprocessor programming required for fast graphic processing, machine learning, and other performance-sensitive tasks. This exceptional book unpacks the features, patterns, and best practices of production-grade C++ concurrency. About the Book C++ Concurrency in Action, Second Edition is the definitive guide to writing elegant multithreaded applications in C++. Updated for C++ 17, it carefully addresses every aspect of concurrent development, from starting new threads to designing fully functional multithreaded algorithms and data structures. Concurrency master Anthony Williams presents examples and practical tasks in every chapter, including insights that will delight even the most experienced developer. What's inside Full coverage of new C++ 17 features Starting and managing threads Synchronizing concurrent operations Designing concurrent code Debugging multithreaded applications About the Reader Written for intermediate C and C++ developers. No prior experience with concurrency required. About the Author Anthony Williams has been an active member of the BSI C++ Panel since 2001 and is the developer of the just::thread Pro extensions to the C++ 11 thread library. Table of Contents Hello, world of concurrency in C++! Managing threads Sharing data between threads Synchronizing concurrent operations The C++ memory model and operations on atomic types Designing lock-based concurrent data structures Designing lock-free concurrent data structures Designing concurrent code Advanced thread management Parallel algorithms Testing and debugging multithreaded applications




Concurrent Programming on Windows


Book Description

“When you begin using multi-threading throughout an application, the importance of clean architecture and design is critical. . . . This places an emphasis on understanding not only the platform’s capabilities but also emerging best practices. Joe does a great job interspersing best practices alongside theory throughout his book.” – From the Foreword by Craig Mundie, Chief Research and Strategy Officer, Microsoft Corporation Author Joe Duffy has risen to the challenge of explaining how to write software that takes full advantage of concurrency and hardware parallelism. In Concurrent Programming on Windows, he explains how to design, implement, and maintain large-scale concurrent programs, primarily using C# and C++ for Windows. Duffy aims to give application, system, and library developers the tools and techniques needed to write efficient, safe code for multicore processors. This is important not only for the kinds of problems where concurrency is inherent and easily exploitable—such as server applications, compute-intensive image manipulation, financial analysis, simulations, and AI algorithms—but also for problems that can be speeded up using parallelism but require more effort—such as math libraries, sort routines, report generation, XML manipulation, and stream processing algorithms. Concurrent Programming on Windows has four major sections: The first introduces concurrency at a high level, followed by a section that focuses on the fundamental platform features, inner workings, and API details. Next, there is a section that describes common patterns, best practices, algorithms, and data structures that emerge while writing concurrent software. The final section covers many of the common system-wide architectural and process concerns of concurrent programming. This is the only book you’ll need in order to learn the best practices and common patterns for programming with concurrency on Windows and .NET.




Introduction to Concurrency in Programming Languages


Book Description

Illustrating the effect of concurrency on programs written in familiar languages, this text focuses on novel language abstractions that truly bring concurrency into the language and aid analysis and compilation tools in generating efficient, correct programs. It also explains the complexity involved in taking advantage of concurrency with regard to program correctness and performance. The book describes the historical development of current programming languages and the common threads that exist among them. It also contains several chapters on design patterns for parallel programming and includes quick reference guides to OpenMP, Erlang, and Cilk. Ancillary materials are available on the book's website.




Concurrent Programming in Java


Book Description

Software -- Programming Languages.




Parallel and Concurrent Programming in Haskell


Book Description

If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network




Objects for Concurrent Constraint Programming


Book Description

Concurrent constraint programming (ccp) is a recent development in programming language design. Its central contribution is the notion of partial information provided by a shared constraint store. This constraint store serves as a communication medium between concurrent threads of control and as a vehicle for their synchronization. Objects for Concurrent Constraint Programming analyzes the possibility of supporting object-oriented programming in ccp. Starting from established approaches, the book covers various object models and discusses their properties. Small Oz, a sublanguage of the ccp language Oz, is used as a model language for this analysis. This book presents a general-purpose object system for Small Oz and describes its implementation and expressivity for concurrent computation. Objects for Concurrent Constraint Programming is written for programming language researchers with an interest in programming language aspects of concurrency, object-oriented programming, or constraint programming. Programming language implementors will benefit from the rigorous treatment of the efficient implementation of Small Oz. Oz programmers will get a first-hand view of the design decisions that lie behind the Oz object system.




Start Concurrent


Book Description

Multicore microprocessors are now at the heart of nearly all desktop and laptop computers. While these chips offer exciting opportunities for the creation of newer and faster applications, they also challenge students and educators. How can the new generation of computer scientists growing up with multicore chips learn to program applications that exploit this latent processing power? This unique book is an attempt to introduce concurrent programming to first-year computer science students, much earlier than most competing products. This book assumes no programming background but offers a broad coverage of Java. It includes over 150 numbered and numerous inline examples as well as more than 300 exercises categorized as "conceptual," "programming," and "experiments." The problem-oriented approach presents a problem, explains supporting concepts, outlines necessary syntax, and finally provides its solution. All programs in the book are available for download and experimentation. A substantial index of at least 5000 entries makes it easy for readers to locate relevant information. In a fast-changing field, this book is continually updated and refined. The 2014 version is the seventh "draft edition" of this volume, and features numerous revisions based on student feedback. A list of errata for this version can be found on the Purdue University Department of Computer Science website.




Programming Erlang


Book Description

Describes how to build parallel, distributed systems using the ERLANG programming language.




Concurrent Programming


Book Description

Mathematics of Computing -- Parallelism.