Brittle Matrix Composites 10


Book Description

The subjects of the symposia are on composite materials behaving as brittle, normal and special conditions of exploitation. Brittle matrix composites are applied in various domains and the series of symposia are closely related to their applications in civil engineering. In the last decades their importance is increasing along with their variety and the use of most advanced methods of testing. Papers include concretes, fibre concretes and ceramics, particularly their composition, microstructure and fracture processes. Various new and advanced engineering problems are presented in the papers.







Brittle Matrix Composites


Book Description

The drying of cementitious materials is of interest in volume change (i.e., shrinkage) research. However, the movement of water due to drying and wetting also plays a significant role in many durability related problems (e.g., corrosion, alkali silica reactivity, freezing and thawing). Many factors can influence the drying and wetting process in concrete including: pore structure, environmental conditions, and liquid properties. This paper describes the influence of the liquid properties on the drying process. Specifically, this work examines the non-linear moisture diffusion coefficient that is used in a differential equation that describes drying. This paper describes how the non-linear moisture diffusion coefficient is influenced by the presence of deicing salts solutions. The relationship between the equilibrium relative humidity and the solution properties is also discussed in this paper. A higher degree of saturation was observed for the samples containing deicing salt solutions, as compared to the plain samples at any given humidity. The presence of deicing salt causes a shift of the non-linear moisture diffusion coefficient as a function of relative humidity. The non-linear moisture diffusion coefficient curves have near zero rates of drying at low relative humidity with a rapid increase in drying rate as the relative humidity is increased (especially near the equilibrium relative humidity) followed by diffusion coefficient of 0 between RHeq and 100% RH.




Principles of Stormwater Management


Book Description

This book presents of all aspects of storm water management: the hydrologic cycle, sources of contaminants, standards applicable to discharges, regulatory issues, atmospheric deposition, best management practices, and health/environmental impacts. It includes technical details of the modern treatment of stormwater, the emerging issues of atmospheric deposition, run-on, and snow melt, the Epidemiologic Model, and field data on discharge concentrations of a variety of contaminants. The principles explained in this book will enable students, contractors, developers, and engineers to grasp the most important field elements which must be included for construction projects impacting stormwater.




Sustainable Winter Road Operations


Book Description

The first and only comprehensive guide to best practices in winter road operations Winter maintenance operations are essential to ensure the safety, mobility, and productivity of transportation systems, especially in cold-weather climates, and responsible agencies are continually challenged to provide a high level of service in a fiscally and environmentally responsible manner. Sustainable Winter Road Operations bridges the knowledge gaps, providing the first up-to-date, authoritative, single-source overview and guide to best practices in winter road operations that considers the triple bottom line of sustainability. With contributions from experts in the field from around the world, this book takes a holistic approach to the subject. The authors address the many negative impacts on regional economies and the environment of poorly planned and inadequate winter road operations, and they make a strong case for the myriad benefits of environmentally sustainable concepts and practices. Best practice applications of materials, processes, equipment, and associated technologies and how they can improve the effectiveness and efficiency of winter operations, optimize materials usage, and minimize cost, corrosion, and environmental impacts are all covered in depth. Provides the first up-to-date, authoritative and comprehensive overview of best practices in sustainable winter road operations currently in use around the world Covers materials, processes, equipment, and associated technologies for sustainable winter road operations Brings together contributions by an international all-star team of experts with extensive experience in designing, implementing, and managing sustainable winter road operations Designed to bring professionals involved in transportation and highway maintenance and control up to speed with current best practice Sustainable Winter Road Operations is essential reading for maintenance professionals dealing with snow and ice control operations on highways, motorways and local roads. It is a valuable source of information and guidance for decision makers, researchers, and engineers in transportation engineering involved in transportation and highway maintenance. And it is an ideal textbook for advanced-level courses in transportation engineering.




Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering


Book Description

Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering focuses on nanotechnology, the innovation and control of materials at 100 nm or smaller length scales, and how they have revolutionized almost all of the various disciplines of science and engineering study. In particular, advances in synthesizing, imaging, and manipulating materials at the nano-scale have provided engineers with a broader array of materials and tools for creating high-performance devices. Nanomaterials possess drastically different properties than those of their bulk counterparts mainly because of their high surface-to-mass ratios and high surface energies/reactivity. For instance, carbon nanotubes have been shown to possess impressive mechanical strength, stiffness, and electrical conductivity superior to that of bulk carbon. Whilst nanotechnology has become deeply rooted in electrical, chemical, and materials engineering disciplines, its proliferation into civil engineering did not begin until fairly recently. This book covers that proliferation and the main challenges associated with the integration of nanomaterials and nano-scale design principles into civil and structural engineering. - Examines nanotechnology and its application to not only structural engineering, but also transportation, new infrastructure materials, and the applications of nanotechnology to existing structural systems - Focuses on how nanomaterials can provide enhanced sensing capabilities and mechanical reinforcement of the original structural material - Analyzes experimental and computational work carried out by world-renowned researchers







Interim Guide for Optimum Joint Performance of Concrete Pavements


Book Description

The purpose of this guide is to help practitioners understand how to optimize concrete pavement joint performance through the identification, mitigation, and prevention of joint deterioration. It summarizes current knowledge from research and practice to help practitioners access the latest knowledge and implement proven techniques. Emphasizing that water is the common factor in most premature joint deterioration, this guide describes various types of joint deterioration that can occur. Some distresses are caused by improper joint detailing or construction, and others can be attributed to inadequate materials or proportioning. D cracking is a form of joint distress that results from the use of poor-quality aggregates. A particular focus in this guide is joint distress due to freeze-thaw action. Numerous factors are at play in the occurrence of this distress, including the increased use of a variety of deicing chemicals and application strategies. Finally, this guide provides recommendations for minimizing the potential for joint deterioration, along with recommendations for mitigation practices to slow or stop the progress of joint deterioration.