The Dirac Equation


Book Description

Ever since its invention in 1929 the Dirac equation has played a fundamental role in various areas of modern physics and mathematics. Its applications are so widespread that a description of all aspects cannot be done with sufficient depth within a single volume. In this book the emphasis is on the role of the Dirac equation in the relativistic quantum mechanics of spin-1/2 particles. We cover the range from the description of a single free particle to the external field problem in quantum electrodynamics. Relativistic quantum mechanics is the historical origin of the Dirac equation and has become a fixed part of the education of theoretical physicists. There are some famous textbooks covering this area. Since the appearance of these standard texts many books (both physical and mathematical) on the non relativistic Schrodinger equation have been published, but only very few on the Dirac equation. I wrote this book because I felt that a modern, comprehensive presentation of Dirac's electron theory satisfying some basic requirements of mathematical rigor was still missing.




The Dirac Equation and its Solutions


Book Description

The Dirac equation is of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly. In this monograph, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.




Modern Particle Physics


Book Description

"Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book"--




Advanced Quantum Mechanics


Book Description

This book covers advanced topics in quantum mechanics, including nonrelativistic multi-particle systems, relativistic wave equations, and relativistic fields. Numerous examples for application help readers gain a thorough understanding of the subject. The presentation of relativistic wave equations and their symmetries, and the fundamentals of quantum field theory lay the foundations for advanced studies in solid-state physics, nuclear, and elementary particle physics. The authors earlier book, Quantum Mechanics, was praised for its unsurpassed clarity.




The Dirac Equation and its Solutions


Book Description

The Dirac equation is of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly. In this monograph, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.




Relativistic Quantum Mechanics. Wave Equations


Book Description

Relativistic Quantum Mechanics. Wave Equations concentrates mainly on the wave equations for spin-0 and spin-1/2 particles. Chapter 1 deals with the Klein-Gordon equation and its properties and applications. The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions. Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein's paradox, and relativistic symmetry principles. Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner). The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course. This third edition has been slightly revised to bring the text up-to-date.




The Supersymmetric Dirac Equation


Book Description

The solution of the Dirac equation for an electron in a Coulomb field is systematically treated here by utilizing new insights provided by supersymmetry. It is shown that each of the concepts has its analogue in the non-relativistic case. Indeed, the non-relativistic case is developed first, in order to introduce the new concepts in a familiar context. The symmetry of the non-relativistic model is already present in the classical limit, so the classical Kepler problem is first discussed in order to bring out the role played by the Laplace vector, one of the central concepts of the whole book. Analysis of the concept of eccentricity of the orbits turns out to be essential to understanding the relation of the classical and quantum mechanical models. The opportunity is taken to relive the great moments of physics: From Kepler's discovery of the laws of motion of the planets the development is traced through the Dirac equation up to modern advances, which bring the concepts of supersymmetry to bear on the derivation of the solutions.




The Dirac Equation in Curved Spacetime


Book Description

This book explains and develops the Dirac equation in the context of general relativistic quantum mechanics in a range of spacetime dimensions. It clarifies the subject by carefully pointing out the various conventions used and explaining how they are related to each other. The prerequisites are familiarity with general relativity and an exposure to the Dirac equation at the level of special relativistic quantum mechanics, but a review of this latter topic is given in the first chapter as a reference and framework for the physical interpretations that follow. Worked examples and exercises with solutions are provided. Appendices include reviews of topics used in the body of the text. This book should benefit researchers and graduate students in general relativity and in condensed matter.




Nonlinear Dirac Equation: Spectral Stability of Solitary Waves


Book Description

This monograph gives a comprehensive treatment of spectral (linear) stability of weakly relativistic solitary waves in the nonlinear Dirac equation. It turns out that the instability is not an intrinsic property of the Dirac equation that is only resolved in the framework of the second quantization with the Dirac sea hypothesis. Whereas general results about the Dirac-Maxwell and similar equations are not yet available, we can consider the Dirac equation with scalar self-interaction, the model first introduced in 1938. In this book we show that in particular cases solitary waves in this model may be spectrally stable (no linear instability). This result is the first step towards proving asymptotic stability of solitary waves. The book presents the necessary overview of the functional analysis, spectral theory, and the existence and linear stability of solitary waves of the nonlinear Schrödinger equation. It also presents the necessary tools such as the limiting absorption principle and the Carleman estimates in the form applicable to the Dirac operator, and proves the general form of the Dirac-Pauli theorem. All of these results are used to prove the spectral stability of weakly relativistic solitary wave solutions of the nonlinear Dirac equation.




Group Theoretical Foundations of Quantum Mechanics


Book Description

Table of Contents Preface 1 Foundations 1 2 Why Geometry, so Physics, Require Complex Numbers 25 3 Properties of Statefunctions 38 4 The Foundations of Coherent Superposition 58 5 Geometry, Transformations, Groups and Observers 85 6 The Poincare Group and Its Implications 108 7 The Dimension of Space 122 8 Bosons, Fermions, Spinors and Orthogonal Groups 146 9 The Complete Reasonableness of Quantum Mechanics 159 A: Terminology and Conventions 177 The Einstein Podolsky Rosen Paradox 185 Experimental Meaning of the Concept of Identical Particles 191 Nonexistence of Superselection Rules; Definition of Term "Frame of Reference" 203 Complex Groups, Quantum Mechanics, and the Dimension and Reality of Space 221 The Reality and Dimension of Space and the Complexity of Quantum Mechanics 235 References 255 Index 259.