The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components


Book Description

By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the emphasis lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals. This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing how our understanding of DHC is supported by progress in general understanding of such broad fields as the study of hysteresis associated with first order phase transformations, phase relationships in coherent crystalline metallic solids, the physics of point and line defects, diffusion of substitutional and interstitial atoms in crystalline solids, and continuum fracture and solid mechanics. Furthermore, an account of current methodologies is given illustrating how such understanding of hydrogen, hydrides and DHC in zirconium alloys underpins these methodologies for assessments of real life cases in the Canadian nuclear industry. The all-encompassing approach makes The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Component: Delayed Hydride Cracking an ideal reference source for students, researchers and industry professionals alike.




Effect of Hydride Distribution on the Mechanical Properties of Zirconium-Alloy Fuel Cladding and Guide Tubes


Book Description

Localization of hydride precipitates exacerbates the hydrogen embrittlement effects on the deformation and fracture properties of Zircaloy fuel cladding materials. Thus, at comparable hydrogen concentration levels, localized hydride precipitates are more detrimental from the standpoint of cladding integrity during service. Indeed, the hydride precipitates are often non-homogeneously distributed in fuel assembly components; for example, in irradiated fuel cladding, the hydride rim is formed near the outer oxide-metal interface because of the temperature gradient that exists during operation. With increasing fuel burnup, this hydride rim not only becomes denser but might be accompanied by gradients in local hydrogen and hydride concentrations through the rest of the cladding wall thickness. Whereas the importance of hydride spacing and their orientation, as well as the alloy matrix ligaments interspaced with the distributed hydride has been recognized in the literature, little work has been reported on the effects of hydride precipitate distribution on the mechanical properties of Zircaloy fuel assembly component materials. In this paper, we report on an extensive mechanical test program on low-tin Zircaloy-4 specimens from stress-relieved cladding and recrystallized guide tubes, charged with hydrogen to obtain uniform, rimmed, and layered hydride distributions. The hydrogen concentration (0-1200 ppm) and hydride rim thickness (10-90 ?m) were also varied. The strain rate was kept at 10-4/s to simulate in-service steady-state conditions and the tests were conducted both at room temperature and 300°C. All test specimens were of small-gauge-section, cut-outs from cladding, and guide tubes. The loading configurations included slotted-arc test (SAT) on half-ring-shaped specimens and uniaxial tension test (UTT) on dog-bone-shaped cut-outs. Further, prompted by the finite-element analysis of the gauge-section region, a unique geometry of internal slotted-arc specimens with parallel gauge section (ISATP) was chosen. Detailed stress-strain curves for all tests were measured, and post-test fractography and local hydrogen concentrations within the gauge sections were measured by hot extractions. Comparative data on the measured strengths and elongations for the three types of hydride distributions (i.e., uniform, rimmed, and layered) are presented. Quantification and analyses of these effects have provided a general constitutive stress-strain relationship for assessing margins to cladding or guide tube failures.




Comprehensive Nuclear Materials


Book Description

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field




Modeling Zirconium Hydride Precipitation and Dissolution in Zirconium Alloys


Book Description

Nuclear fuel cladding undergoes waterside corrosion during normal operating conditions in pressurized water reactors, whereby the zirconium (Zr) in the fuel cladding reacts with the oxygen present in water, creating zirconia (ZrO) and releasing hydrogen. Part of the hydrogen created by the corrosion reaction can be absorbed into the fuel cladding. Once in the cladding, hydrogen redistributes by solid state diffusion in the metal, in response to gradients of concentration, temperature and stress. Once the local hydrogen solubility is exceeded, zirconium hydride precipitates are formed.The precipitation of hydrides may impact the integrity of zirconium-based nuclear fuel cladding, both during normal operation and during extended dry storage. It is important to model hydrogen behavior accurately, so as to assess cladding properties both in reactor and during dry storage. This is because the cladding is the first containment barrier, which prevents fission products to be released into the primary circuit. For this reason, this study aims to first understand hydride precipitation and dissolution and then implement this understanding into a hydride precipitation and dissolution model. To this end, differential scanning calorimetry (DSC) and in-situ synchrotron X-ray diffraction experiments were used to study the precipitation and dissolution of hydrides in Zircaloy-4 under different thermo-mechanical conditions.Results showed that when hydrided samples were cooled at cooling rates above 1C/min the hydrogen content in solid solution decreased, following the Terminal Solid Solubility for Precipitation (TSSP) curve. However, when the samples were held at a fixed temperature for a long anneal, the hydrogen content in solid solution continued to decrease below the TSSP and approached the Terminal Solid Solubility for Dissolution (TSSD). This result suggests that TSSP is a kinetic limit and that a unique solubility limit, i.e. TSSD governs the equilibrium hydrogen concentration in solid solution. DSC was used to perform isothermal precipitation experiments, from which the hydride precipitation rate and the degree of precipitation completion were quantified between 280 and 350C for the first time. The data obtained was used to generate a TTT diagram for hydride precipitation in Zircaloy-4 showing that hydride precipitation is diffusion-controlled at low temperatures and reaction-controlled at high temperatures. The experimental precipitation rate was fitted using the Johnson-Mehl-Avrami-Kolmogorov model to obtain a value of the Avrami parameter of 2.56 (2.5 is the theoretical value for the growth of platelet-shaped precipitates). It was also possible to derive the precipitation activation energy of for each process. Because it was possible to separate hydride nucleation and hydride growth, it was possible to ascertain that if the hydrogen content in solid solution is greater than TSSP, precipitation occurs by hydride nucleation. In contrast, precipitation occurs by hydride growth as long as hydride platelets are present and the hydrogen content in solid solution is above TSSD. Hydride dissolution will take place if hydrides are present and the hydrogen content in solid solution is below TSSP. Using this new understanding of hydrogen precipitation and dissolution mechanisms, experiments were conducted at the Advanced Photon Source (APS) using high temperature change rates to measure hydride nucleation and dissolution kinetics. These observations and measurements were combined to existing theory to a model, entitled Hydride Growth, Nucleation, and Dissolution model (HNGD model) that can accurately simulate hydrogen behavior in Zircaloy fuel cladding and that shows a significant improvement on the model used in BISON.The development of such a model is the first step towards obtaining a model for the impact of the development of hydride microstructure on nuclear fuel cladding mechanical properties during normal operation and to address concerns over fuel handling during dry storage. The use and benchmarking of such a code can be used to justify a safe burnup extension of nuclear fuel, which would reduce the cost of nuclear energy in an increasingly competitive market.







Comprehensive Structural Integrity


Book Description

The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.







Structural Alloys for Nuclear Energy Applications


Book Description

High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.




Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials


Book Description

This book provides a comprehensive overview of the main nuclear characterization techniques used to study hydrogen absorption and desorption in materials. The various techniques (neutron scattering, nuclear magnetic resonance, ion-beams, positron annihilation spectroscopy) are explained in detail, and a variety of examples of recent research projects are given to show the unique advantage of these techniques to study hydrogen in materials. Most of these nuclear techniques require very specialized instrumentation, and there are only a handful of these instruments available worldwide. Therefore, the aim of this book is to reach out to a readership with a very diverse background in the physical sciences and engineering and a broad range of hydrogen-related research interests. The same technique can be used by researchers interested in the improvement of the performance of hydrogen storage materials and by those focused on hydrogen ingress causing embrittlement of metals. The emphasis of this book is to provide tutorial material on how to use nuclear characterization techniques for the investigation of hydrogen in materials – information that cannot readily be found in conference and regular research papers. Provides a comprehensive overview of nuclear techniques used for hydrogen-related research Explains all nuclear techniques in detail for the non-expert Covers the whole range of hydrogen-related research Features chapters written by world-renowned experts in nuclear technique and hydrogen-related research




Zirconium Hydride


Book Description