The Formation of Shocks in 3-dimensional Fluids


Book Description

The equations describing the motion of a perfect fluid were first formulated by Euler in 1752. These equations were among the first partial differential equations to be written down, but, after a lapse of two and a half centuries, we are still far from adequately understanding the observed phenomena which are supposed to lie within their domain of validity. These phenomena include the formation and evolution of shocks in compressible fluids, the subject of the present monograph. The first work on shock formation was done by Riemann in 1858. However, his analysis was limited to the simplified case of one space dimension. Since then, several deep physical insights have been attained and new methods of mathematical analysis invented. Nevertheless, the theory of the formation and evolution of shocks in real three-dimensional fluids has remained up to this day fundamentally incomplete. This monograph considers the relativistic Euler equations in three space dimensions for a perfect fluid with an arbitrary equation of state. The author considers initial data for these equations which outside a sphere coincide with the data corresponding to a constant state. Under suitable restriction on the size of the initial departure from the constant state, he establishes theorems that give a complete description of the maximal classical development. In particular, it is shown that the boundary of the domain of the maximal classical development has a singular part where the inverse density of the wave fronts vanishes, signalling shock formation. The theorems give a detailed description of the geometry of this singular boundary and a detailed analysis of the behavior of the solution there. A complete picture of shock formation in three-dimensional fluids is thereby obtained. The approach is geometric, the central concept being that of the acoustical spacetime manifold.




Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations


Book Description

In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is extended to two classes of wave equations in three spatial dimensions. It is shown that if the nonlinear terms fail to satisfy the null condition, then for small data, shocks are the only possible singularities that can develop. Moreover, the author exhibits an open set of small data whose solutions form a shock, and he provides a sharp description of the blow-up. These results yield a sharp converse of the fundamental result of Christodoulou and Klainerman, who showed that small-data solutions are global when the null condition is satisfied. Readers who master the material will have acquired tools on the cutting edge of PDEs, fluid mechanics, hyperbolic conservation laws, wave equations, and geometric analysis.




Hyperbolic Systems of Conservation Laws


Book Description

This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.




The Formation of Black Holes in General Relativity


Book Description

In 1965 Penrose introduced the fundamental concept of a trapped surface, on the basis of which he proved a theorem which asserts that a spacetime containing such a surface must come to an end. The presence of a trapped surface implies, moreover, that there is a region of spacetime, the black hole, which is inaccessible to observation from infinity. Since that time a major challenge has been to find out how trapped surfaces actually form, by analyzing the dynamics of gravitational collapse. The present monograph achieves this aim by establishing the formation of trapped surfaces in pure general relativity through the focusing of gravitational waves. The theorems proved in this monograph constitute the first foray into the long-time dynamics of general relativity in the large, that is, when the initial data are no longer confined to a suitable neighborhood of trivial data. The main new method, the short pulse method, applies to general systems of Euler-Lagrange equations of hyperbolic type and provides the means to tackle problems which have hitherto seemed unapproachable. This monograph will be of interest to people working in general relativity, geometric analysis, and partial differential equations.




Fluid Mechanics


Book Description

Fluid Mechanics, Second Edition deals with fluid mechanics, that is, the theory of the motion of liquids and gases. Topics covered range from ideal fluids and viscous fluids to turbulence, boundary layers, thermal conduction, and diffusion. Surface phenomena, sound, and shock waves are also discussed, along with gas flow, combustion, superfluids, and relativistic fluid dynamics. This book is comprised of 16 chapters and begins with an overview of the fundamental equations of fluid dynamics, including Euler's equation and Bernoulli's equation. The reader is then introduced to the equations of motion of a viscous fluid; energy dissipation in an incompressible fluid; damping of gravity waves; and the mechanism whereby turbulence occurs. The following chapters explore the laminar boundary layer; thermal conduction in fluids; dynamics of diffusion of a mixture of fluids; and the phenomena that occur near the surface separating two continuous media. The energy and momentum of sound waves; the direction of variation of quantities in a shock wave; one- and two-dimensional gas flow; and the intersection of surfaces of discontinuity are also also considered. This monograph will be of interest to theoretical physicists.




Recent Advances in Nonlinear Partial Differential Equations and Applications


Book Description

The articles of this book are written by leading experts in partial differential equations and their applications, who present overviews here of recent advances in this broad area of mathematics. The formation of shocks in fluids, modern numerical computation of turbulence, the breaking of the Einstein equations in a vacuum, the dynamics of defects in crystals, effects due to entropy in hyperbolic conservation laws, the Navier-Stokes and other limits of the Boltzmann equation, occupancy times for Brownian motion in a two dimensional wedge, and new methods of analyzing and solving integrable systems are some of this volume's subjects. The reader will find an exposition of important advances without a lot of technicalities and with an emphasis on the basic ideas of this field.




Mathematical Aspects of Numerical Solution of Hyperbolic Systems


Book Description

This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena. The authors also address a number of original "nonclassical" problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice. This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.







Fluid Mechanics and Fluid Power (Vol. 3)


Book Description

This book presents the select proceedings of the 48th National Conference on Fluid Mechanics and Fluid Power (FMFP 2021) held at BITS Pilani in December 2021. It covers the topics such as fluid mechanics, measurement techniques in fluid flows, computational fluid dynamics, instability, transition and turbulence, fluid‐structure interaction, multiphase flows, micro- and nanoscale transport, bio-fluid mechanics, aerodynamics, turbomachinery, propulsion and power. The book will be useful for researchers and professionals interested in the broad field of mechanics.




The Finite Element Method for Fluid Dynamics


Book Description

Dealing with general problems in fluid mechanics, convection diffusion, compressible and incompressible laminar and turbulent flow, shallow water flows and waves, this is the leading text and reference for engineers working with fluid dynamics in fields including aerospace engineering, vehicle design, thermal engineering and many other engineering applications. The new edition is a complete fluids text and reference in its own right. Along with its companion volumes it forms part of the indispensable Finite Element Method series.New material in this edition includes sub-grid scale modelling; artificial compressibility; full new chapters on turbulent flows, free surface flows and porous medium flows; expanded shallow water flows plus long, medium and short waves; and advances in parallel computing. - A complete, stand-alone reference on fluid mechanics applications of the FEM for mechanical, aeronautical, automotive, marine, chemical and civil engineers. - Extensive new coverage of turbulent flow and free surface treatments