Mechanisms of Arsenic Toxicity and Tolerance in Plants


Book Description

Arsenic is likely the most talked-about metalloid in the modern world because of its toxic effects on both animal and plants. Further, arsenic pollution is now producing negative impacts on food security, especially in many south Asian countries. Since plants are a major food source, their adaptation to As-rich environments is essential, as is being informed about recent findings on multifarious aspects of the mechanisms of arsenic toxicity and tolerance in plants. Although numerous research works and review articles have been published in journals, annual reviews and as book chapters, to date there has been no comprehensive book on this topic. This book contains 19 informative chapters on arsenic chemistry, plant uptake, toxicity and tolerance mechanisms, as well as approaches to mitigation. Readers will be introduced to the latest findings on plant responses to arsenic toxicity, various tolerance mechanisms, and remediation techniques. As such, the book offers a timely and valuable resource for a broad audience, including plant scientists, soil scientists, environmental scientists, agronomists, botanists and molecular biologists.







Arsenic in Plants


Book Description

Arsenic in Plants Comprehensive resource detailing the chemistry, toxicity and impact of arsenic in plants, and solutions to the problem Arsenic in Plants: Uptake, Consequences and Remediation Techniques provides comprehensive coverage of the subject, detailing arsenic in our environment, the usage of arsenicals in crop fields, phytotoxicity of arsenic and arsenic’s impact on the morphology, anatomy and quantitative and qualitative traits of different plant groups, including their physiology and biochemistry. The work emphasizes the occurrence of arsenic, its speciation and transportation in plants, and differences in mechanisms of tolerance in hyper-accumulator and non-accumulator plants. Throughout the text, the highly qualified authors delve into every facet of the interaction of arsenic with plants, including the ionomics, genomics, transcriptomics and proteomics in relation to arsenic toxicity, impact of exogenous phytohormones and growth-regulating substances, management of arsenic contamination in the soil-plant continuum, phytoremediation of arsenic toxicity and physical removal of arsenic from water. General discussion has also been included on subjects such as the ways through which this metalloid affects plant and human systems. Topics covered include: Introduction and historical background of arsenic and the mechanism of arsenic transport and metabolism in plants Arsenic-induced responses in plants, including impact on biochemical processes and different plant groups, from cyanobacteria to higher plants The role of phytohormones, mineral nutrients, metabolites and signaling molecules in regulating arsenic-induced toxicity in plants Genomic, proteomic, metabolomic, ionomic and transcriptional regulation during arsenic stress Strategies to reduce the arsenic contamination in soil-plant systems and arsenic removal by phytoremediation techniques Researchers, academics, and students of plant physiology, biotechnology, and agriculture will find valuable information in Arsenic in Plants to understand this pressing subject in full, along with its implications and how we can adapt our strategies and behaviors to promote reduced contamination through practical applications.













Arsenic Hazards to Fish, Wildlife, and Invertebrates


Book Description

This report briefly synthesizes technical literature on ecological and toxicological aspects of arsenic in the environment, with special reference to natural resources. It is divided into a number of subtopics: sources, fate, and uses; chemical and biochemical properties; essentiality, synergism, and antagonism; background concentrations in biological and nonbiological samples; lethal and sublethal effects, including carcinogenesis, tertogenesis, and mutagenesis; and proposed criteria and research needs for the protection of sensitive organisms. parag Keywords: contaminants; toxicity; fishes; wildlife; natural resources; invertebrates; arsenic; organoarsenicals; carcinogenesis; teratogenesis; mutagenesis; metabolism.