The Influences of Big Data Analytics


Book Description

The theoretical framework for this book was our ground-up theory of the Scope, Size, Speed, and Skill (4Ss) and Technological Situational Happenstances (TSHs) applied to Big data analytics. With in-depth research, we catechized the effects of the coalesced insights from big data influencing the architectures of incremental and radical business models. We discussed data inflation and the global impact of TSHs. We showed how deft leadership used insights gleaned from big data analytics to make strategic decisions. The big data syndrome led to Microsoft's acquisition of Nokia in our case study. Our study of APPLE Corporation's use of large datasets was explicitly analyzed. Leaderships' failure to incorporate those contextual elements afforded by insights gleaned from big data analytics, concomitant with the associated costs led to acute forms of irrational rationalism, groupthink, and faulty decision making. We explained the statistics used to essentially describe this paradigm shift, such as high dimensionality, incidental endogeneity, noise accumulation, spurious correlation, and computational costs. Significantly, machine learning challenged the status quo by effectively changing the existing technological landscape. To scholarly critics, how would supervised and un-supervised learning algorithms advance the trajectory of perspectives in applied knowledge under the umbrella of big data? Further, political and socio-economics tied to big data was examined. We recommended leaders should have a shared cognition on how to leverage analytics from large datasets for competitive advantages. Most significantly, leaders or managers should be cognizant of the inextricable synergies that seamlessly flow from adroitly implementing a strategy to profit from the speed, size, skill, and scope (i.e. the 4Ss) of the big data environment, conditioned by the leveraging of those transactional situational happenstances generated by increases in market volatility. We concluded the algorithmic processes of leveraging insights from big data have globally resulted in a disruption of current technological pathways.




Big Data and Analytics


Book Description

This book presents and discusses the main strategic and organizational challenges posed by Big Data and analytics in a manner relevant to both practitioners and scholars. The first part of the book analyzes strategic issues relating to the growing relevance of Big Data and analytics for competitive advantage, which is also attributable to empowerment of activities such as consumer profiling, market segmentation, and development of new products or services. Detailed consideration is also given to the strategic impact of Big Data and analytics on innovation in domains such as government and education and to Big Data-driven business models. The second part of the book addresses the impact of Big Data and analytics on management and organizations, focusing on challenges for governance, evaluation, and change management, while the concluding part reviews real examples of Big Data and analytics innovation at the global level. The text is supported by informative illustrations and case studies, so that practitioners can use the book as a toolbox to improve understanding and exploit business opportunities related to Big Data and analytics.




Big Data, Big Analytics


Book Description

Unique prospective on the big data analytics phenomenon for both business and IT professionals The availability of Big Data, low-cost commodity hardware and new information management and analytics software has produced a unique moment in the history of business. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. These capabilities are neither theoretical nor trivial. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue and profitability. The Age of Big Data is here, and these are truly revolutionary times. This timely book looks at cutting-edge companies supporting an exciting new generation of business analytics. Learn more about the trends in big data and how they are impacting the business world (Risk, Marketing, Healthcare, Financial Services, etc.) Explains this new technology and how companies can use them effectively to gather the data that they need and glean critical insights Explores relevant topics such as data privacy, data visualization, unstructured data, crowd sourcing data scientists, cloud computing for big data, and much more.




Big Data Computing


Book Description

Due to market forces and technological evolution, Big Data computing is developing at an increasing rate. A wide variety of novel approaches and tools have emerged to tackle the challenges of Big Data, creating both more opportunities and more challenges for students and professionals in the field of data computation and analysis. Presenting a mix of industry cases and theory, Big Data Computing discusses the technical and practical issues related to Big Data in intelligent information management. Emphasizing the adoption and diffusion of Big Data tools and technologies in industry, the book introduces a broad range of Big Data concepts, tools, and techniques. It covers a wide range of research, and provides comparisons between state-of-the-art approaches. Comprised of five sections, the book focuses on: What Big Data is and why it is important Semantic technologies Tools and methods Business and economic perspectives Big Data applications across industries




New Horizons for a Data-Driven Economy


Book Description

In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.




Big Data Analytics in Supply Chain Management


Book Description

In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.




The Human Face of Big Data


Book Description

The authors invited more than 100 journalists worldwide to use photographs, charts and essays to explore the world of big data and its growing influence on our lives and society.




New Technologies for Human Rights Law and Practice


Book Description

New technological innovations offer significant opportunities to promote and protect human rights. At the same time, they also pose undeniable risks. In some areas, they may even be changing what we mean by human rights. The fact that new technologies are often privately controlled raises further questions about accountability and transparency and the role of human rights in regulating these actors. This volume - edited by Molly K. Land and Jay D. Aronson - provides an essential roadmap for understanding the relationship between technology and human rights law and practice. It offers cutting-edge analysis and practical strategies in contexts as diverse as autonomous lethal weapons, climate change technology, the Internet and social media, and water meters. This title is also available as Open Access.




Big Data


Book Description




Big Data Analytics for Internet of Things


Book Description

BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.