The Iron Pnictide Superconductors


Book Description

This book covers different aspects of the physics of iron-based superconductors ranging from the theoretical, the numerical and computational to the experimental ones. It starts from the basic theory modeling many-body physics in Fe-superconductors and other multi-orbital materials and reaches up to the magnetic and Cooper pair fluctuations and nematic order. Finally, it offers a comprehensive overview of the most recent advancements in the experimental investigations of iron based superconductors.




On the Properties of Novel Superconductors


Book Description

Since the discovery of superconductivity, a great number of theoretical and experimental efforts have been made to describe this new phase of matter that emerged in many body systems. In this regard, theoretical models have been presented; the most famous of which was the BCS theory that can only describe conventional superconductors. With the discovery of new class superconductors, the superconducting mechanism became a new challenge in the field of condensed matter physics. This unexpected discovery opened a new area in the history of superconductivity, and experimental researchers started trying to find new compounds in this class of superconductors. These superconductors are often characterized by the anisotropic character in the superconducting gap function with nodes along a certain direction in the momentum space. Since the pairing interaction has an important role in the superconducting gap structure, its determination is very important to explain the basic pairing mechanism.In this regard, this book includes valuable theoretical and experimental discussions about the properties of superconductors. Here you will find valuable research describing the properties of unconventional superconductors.




Iron-based Superconductors


Book Description

From fundamental physics point of view, iron-based superconductors have properties that are more amenable to band structural calculations. This book reviews the progress made in this fascinating field. With contributions from leading experts, the book provides a guide to understanding materials, physical properties, and superconductivity mechanism




Iron-Based Superconducting Thin Films


Book Description

This book provides a modern introduction to the growth, characterization, and physics of iron-based superconducting thin films. Iron pnictide and iron chalcogenide compounds have become intensively studied key materials in condensed matter physics due to their potential for high temperature superconductivity. With maximum critical temperatures of around 60 K, the new superconductors rank first after the celebrated cuprates, and the latest announcements on ultrathin films promise even more. Thin film synthesis of these superconductors began in 2008 immediately after their discovery, and this growing research area has seen remarkable progress up to the present day, especially with regard to the iron chalcogenides FeSe and FeSe1-xTex, the iron pnictide BaFe2-xCoxAs2 and iron-oxyarsenides. This essential volume provides comprehensive, state-of-the-art coverage of iron-based superconducting thin films in topical chapters with detailed information on thin film synthesis and growth, analytical film characterization, interfaces, and various aspects on physics and materials properties. Current efforts towards technological applications and functional films are outlined and discussed. The development and latest results for monolayer FeSe films are also presented. This book serves as a key reference for students, lecturers, industry engineers, and academic researchers who would like to gain an overview of this complex and growing research area.




History and Theory of Superconductors


Book Description

Rudolf P. Huebener presents the field of superconductivity research in a clear and compact way. He vividly describes how this area has developed in many directions since the discovery of superconductivity more than 100 years ago. This concerns materials, experiments on the physical principles, theoretical understanding and technical applications. Among other things, the essential deals with the Meissner-Ochsenfeld effect, magnetic flux quantization, the Josephson effect, the BCS theory and high-temperature superconductivity. This Springer essential is a translation of the original German 1st edition essentials, Geschichte und Theorie der Supraleiter by Rudolf P. Huebener, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2017. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.







Non-Universal Superconducting Gap Structure in Iron-Pnictides Revealed by Magnetic Penetration Depth Measurements


Book Description

In this book the author presents two important findings revealed by high-precision magnetic penetration depth measurements in iron-based superconductors which exhibit high-transition temperature superconductivity up to 55 K: one is the fact that the superconducting gap structure in iron-based superconductors depends on a detailed electronic structure of individual materials, and the other is the first strong evidence for the presence of a quantum critical point (QCP) beneath the superconducting dome of iron-based superconductors. The magnetic penetration depth is a powerful probe to elucidate the superconducting gap structure which is intimately related to the pairing mechanism of superconductivity. The author discusses the possible gap structure of individual iron-based superconductors by comparing the gap structure obtained from the penetration depth measurements with theoretical predictions, indicating that the non-universal superconducting gap structure in iron-pnictides can be interpreted in the framework of A1g symmetry. This result imposes a strong constraint on the pairing mechanism of iron-based superconductors. The author also shows clear evidence for the quantum criticality inside the superconducting dome from the absolute zero-temperature penetration depth measurements as a function of chemical composition. A sharp peak of the penetration depth at a certain composition demonstrates pronounced quantum fluctuations associated with the QCP, which separates two distinct superconducting phases. This gives the first convincing signature of a second-order quantum phase transition deep inside the superconducting dome, which may address a key question on the general phase diagram of unconventional superconductivity in the vicinity of a QCP.




Superconductivity


Book Description

This book provides readers with a comprehensive overview of the science of superconducting materials. It serves as a fundamental information source on the actual techniques and methodologies involved in superconducting materials growth, characterization and processing. This book includes coverage of several categories of medium and high-temperature superconducting materials: cuprate oxides, borides, and iron-based chalcogenides and pnictides. Provides a single-source reference on superconducting materials growth, characterization and processing; Bridges the gap between materials science and applications of superconductors; Discusses several categories of superconducting materials such as cuprate oxides, borides, and iron-based chalcogenides and pnictides; Covers synthesis, characterization, and processing of superconducting materials, as well as the nanoengineering approach to tailor the properties of the used materials at the nanoscale level.




Complete Plays and Prose


Book Description

Leonce and Lena: There are two imaginary countries: the Kingdom of Popo and the Kingdom of Pipi. Prince Leonce of the Kingdom of Popo and Princess Lena of the Kingdom of Pipi have had their political marriage arranged.




Competing Magnetic Fluctuations in Iron Pnictide Superconductors


Book Description

In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting dome in these and other iron-pnictide families.