The Jacobi-Perron Algorithm


Book Description




The Jacobi-Perron Algorithm


Book Description




The Jacobi-Perron Algorithm


Book Description




Dynamical Systems and Statistical Mechanics


Book Description

Dynamical systems and statistical mechanics have been developing in close interaction during the past decade, and the papers in this book attest to the productiveness of this interaction. The first paper in the collection contains a new result in the theory of quantum chaos, a burgeoning line of inquiry which combines mathematics and physics and which is likely in time to produce many new connections and applications. Another paper, related to the renormalization group method for the study of maps of the circle with singularities due to a jump in the derivative, demonstrates that the fixed point of the renormgroup can in this case be sufficiently described. In certain situations, the renormgroup methods work better than the traditional KAM method. Other topics covered include: thermodynamic formalism for certain infinite-dimensional dynamical systems, numerical simulation of dynamical systems with hyperbolic behaviour, periodic points of holomorphic maps, the theory of random media, statistical properties of the leading eigenvalue in matrix ensembles of large dimension, spectral properties of the one-dimensional Schrodinger operator. This volume will appeal to many readers, as it covers a broad range of topics and presents a view of some of the frontier research in the Soviet Union today.







Substitutions in Dynamics, Arithmetics and Combinatorics


Book Description

A certain category of infinite strings of letters on a finite alphabet is presented here, chosen among the 'simplest' possible one may build, both because they are very deterministic and because they are built by simple rules (a letter is replaced by a word, a sequence is produced by iteration). These substitutive sequences have a surprisingly rich structure. The authors describe the concepts of quantity of natural interactions, with combinatorics on words, ergodic theory, linear algebra, spectral theory, geometry of tilings, theoretical computer science, diophantine approximation, trancendence, graph theory. This volume fulfils the need for a reference on the basic definitions and theorems, as well as for a state-of-the-art survey of the more difficult and unsolved problems.




Geometry of Continued Fractions


Book Description

This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The second edition now includes a geometric approach to Gauss Reduction Theory, classification of integer regular polygons and some further new subjects. Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.




Geometry of Continued Fractions


Book Description

Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.




Sequences and Their Applications – SETA 2006


Book Description

This book constitutes the refereed proceedings of the 4th International Conference on Sequences and Their Applications, SETA 2006. The book presents 32 revised full papers together with 4 invited lectures. The papers are organized in topical sections on linear complexity of sequences, correlation of sequences, stream ciphers and transforms, topics in complexities of sequences, multi-sequence synthesis, sequences and combinatorics, FCSR sequences, aperiodic correlation and applications, and boolean functions, and more.