Magnetoelectric Composites


Book Description

This book is dedicated to modeling and application of magnetoelectric (ME) effects in layered and bulk composites based on magnetostrictive and piezoelectric materials. Currently, numerous theoretical and experimental studies on ME composites are available but few on the development and research of instruments based on them. So far, only investigation of ME magnetic field sensors has been cited in the existing literature. However, these studies have finally resulted in the creation of low-frequency ME magnetic field sensors with parameters substantially exceeding the characteristics of Hall sensors. The book presents the authors’ many years of experience gained in ME composites and through creation of device models based on their studies. It describes low-frequency ME devices, such as current and position sensors and energy harvesters, and microwave ME devices, such as antennas, attenuators, filters, gyrators, and phase shifters.




Multifunctional Oxide Heterostructures


Book Description

This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts. The book consists of chapters on some of the key innovations in the field over recent years, including strongly correlated oxide heterostructures, magnetoelectric coupling and multiferroic materials, thermoelectric phenomena, and two-dimensional electron gases at oxide interfaces. The book covers the core principles, describes experimental approaches to fabricate and characterize oxide heterostructures, demonstrates new functional properties of these materials, and provides an overview of novel applications.




Integrated Multiferroic Heterostructures and Applications


Book Description

Written by well-known experts in the field, this first systematic overview of multiferroic heterostructures summarizes the latest developments, first presenting the fundamental mechanisms, including multiferroic materials synthesis, structures and mechanisms, before going on to look at device applications. The resulting text offers insight and understanding for scientists and students new to this area.




Nanoscale Phase Separation and Colossal Magnetoresistance


Book Description

The study of the spontaneous formation of nanostructures in single crystals of several compounds is now a major area of research in strongly correlated electrons. These structures appear to originate in the competition of phases. The book addresses nanoscale phase separation, focusing on the manganese oxides known as manganites that have the colossal magnetoresistance (CMR) effect of potential relevance for device applications. It is argued that the nanostructures are at the heart of the CMR phenomenon. The book contains updated information on manganite research directed to experts, both theorists and experimentalists. However, graduate students or postdocs will find considerable introductory material, including elements of computational physics.




Composite Magnetoelectrics


Book Description

Composite Magnetoelectrics: Materials, Structures, and Applications gives the reader a summary of the theory behind magnetoelectric phenomena, later introducing magnetoelectric materials and structures and the techniques used to fabricate and characterize them. Part two of the book looks at magnetoelectric devices. Applications include magnetic and current sensors, transducers for energy harvesting, microwave and millimeter wave devices, miniature antennas and medical imaging. The final chapter discusses progress towards magnetoelectric memory. - Summarises clearly the theory behind magnetoelectric phenomena - Strong coverage of fabrication and characterisation techniques - Reviews a broad range of current and potential magnetoelectric devices




Multiferroic Materials


Book Description

"a very detailed book on multiferroics that will be useful for PhD students and researchers interested in this emerging field of materials science" —Dr. Wilfrid Prellier, Research Director, CNRS, Caen, France Multiferroics has emerged as one of the hottest topics in solid state physics in this millennium. The coexistence of multiple ferroic/antiferroic properties makes them useful both for fundamental studies and practical applications such as revolutionary new memory technologies and next-generation spintronics devices. This book provides an historical introduction to the field, followed by a summary of recent progress in single-phase multiferroics (type-I and type-II), multiferroic composites (bulk and nano composites), and emerging areas such as domain walls and vortices. Each chapter addresses potential technological implications. There is also a section dedicated to theoretical approaches, both phenomenological and first-principles calculations.




Chemical Solution Synthesis for Materials Design and Thin Film Device Applications


Book Description

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. - Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications - Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques - Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing




Nanoscale Ferroelectrics and Multiferroics


Book Description

This two volume set reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, the text covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. This set is developed from the high level European scientific knowledge platform built within the COST (European Cooperation in Science and Technology) Action on Single and multiphase ferroics and multiferroics with restricted geometries (SIMUFER, ref. MP0904). Chapter contributors have been carefully selected, and have all made major contributions to knowledge of the respective topics, and overall, they are among most respected scientists in the field.







Ferroelectric Domain Walls


Book Description

Using the nano metric resolution of atomic force microscopy techniques, this work explores the rich fundamental physics and novel functionalities of domain walls in ferroelectric materials, the nano scale interfaces separating regions of differently oriented spontaneous polarization. Due to the local symmetry-breaking caused by the change in polarization, domain walls are found to possess an unexpected lateral piezoelectric response, even when this is symmetry-forbidden in the parent material. This has interesting potential applications in electromechanical devices based on ferroelectric domain patterning. Moreover, electrical conduction is shown to arise at domain walls in otherwise insulating lead zirconate titanate, the first such observation outside of multiferroic bismuth ferrite, due to the tendency of the walls to localize defects. The role of defects is then explored in the theoretical framework of disordered elastic interfaces possessing a characteristic roughness scaling and complex dynamic response. It is shown that the heterogeneous disorder landscape in ferroelectric thin films leads to a breakdown of the usual self-affine roughness, possibly related to strong pinning at individual defects. Finally, the roles of varying environmental conditions and defect densities in domain switching are explored and shown to be adequately modelled as a competition between screening effects and pinning.