The Material Point Method


Book Description

The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases systematically introduces the theory, code design, and application of the material point method, covering subjects such as the spatial and temporal discretization of MPM, frequently-used strength models and equations of state of materials, contact algorithms in MPM, adaptive MPM, the hybrid/coupled material point finite element method, object-oriented programming of MPM, and the application of MPM in impact, explosion, and metal forming. Recent progresses are also stated in this monograph, including improvement of efficiency, memory storage, coupling/combination with the finite element method, the contact algorithm, and their application to problems. - Provides a user's guide and several numerical examples of the MPM3D-F90 code that can be downloaded from a website - Presents models that describe different types of material behaviors, with a focus on extreme events. - Includes applications of MPM and its extensions in extreme events, such as transient crack propagation, impact/penetration, blast, fluid-structure interaction, and biomechanical responses to extreme loading




The Material Point Method for Geotechnical Engineering


Book Description

This practical guide provides the best introduction to large deformation material point method (MPM) simulations for geotechnical engineering. It provides the basic theory, discusses the different numerical features used in large deformation simulations, and presents a number of applications -- providing references, examples and guidance when using MPM for practical applications. MPM covers problems in static and dynamic situations within a common framework. It also opens new frontiers in geotechnical modelling and numerical analysis. It represents a powerful tool for exploring large deformation behaviours of soils, structures and fluids, and their interactions, such as internal and external erosion, and post-liquefaction analysis; for instance the post-failure liquid-like behaviours of landslides, penetration problems such as CPT and pile installation, and scouring problems related to underwater pipelines. In the recent years, MPM has developed enough for its practical use in industry, apart from the increasing interest in the academic world.




Finite Difference Methods for Ordinary and Partial Differential Equations


Book Description

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.




The New Mechanics


Book Description

"The New Mechanics" is a 1908 book on theoretical physics by the renowned physicist and mathematician Henri Poincare. It covers the broad topics of Mechanics and Radium; Mechanics and Optics; and The New Mechanics and Astronomy. His assertion at the time is that some of the well-known physics theories were about to be challenged with more recent discoveries of his time.




A First Course in Numerical Methods


Book Description

Offers students a practical knowledge of modern techniques in scientific computing.




The Combined Finite-Discrete Element Method


Book Description

The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.




Numerical Methods in Geotechnical Engineering


Book Description

Numerical Methods in Geotechnical Engineering contains the proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2014, Delft, The Netherlands, 18-20 June 2014). It is the eighth in a series of conferences organised by the European Regional Technical Committee ERTC7 under the auspices of the International




Introduction to Matrix Analytic Methods in Stochastic Modeling


Book Description

Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.




Point Pattern Analysis


Book Description

Boots and Getis provide a concise explanation of point pattern analysis - a series of techniques for identifying patterns of clustering or regularity in a set of geographical locations. They discuss quadrat and distance methods of measurement, and consider the problems associated with these methods. The authors also outline and compare other measures of arrangement, suggesting when these techniques should be used.




Cone Penetration Testing 2018


Book Description

Cone Penetration Testing 2018 contains the proceedings of the 4th International Symposium on Cone Penetration Testing (CPT’18, Delft, The Netherlands, 21-22 June 2018), and presents the latest developments relating to the use of cone penetration testing in geotechnical engineering. It focuses on the solution of geotechnical challenges using the cone penetration test (CPT), CPT add-on measurements and companion in-situ penetration tools (such as full flow and free fall penetrometers), with an emphasis on practical experience and application of research findings. The peer-reviewed papers have been authored by academics, researchers and practitioners from many countries worldwide and cover numerous important aspects, ranging from the development of innovative theoretical and numerical methods of interpretation, to real field applications. This is an Open Access ebook, and can be found on www.taylorfrancis.com.