The Mathematical Analysis of Logic


Book Description

The Mathematical Analysis of Logic by George Boole, first published in 1948, is a rare manuscript, the original residing in one of the great libraries of the world. This book is a reproduction of that original, which has been scanned and cleaned by state-of-the-art publishing tools for better readability and enhanced appreciation. Restoration Editors' mission is to bring long out of print manuscripts back to life. Some smudges, annotations or unclear text may still exist, due to permanent damage to the original work. We believe the literary significance of the text justifies offering this reproduction, allowing a new generation to appreciate it.




The Mathematical Analysis of Logic


Book Description

This Is A New Release Of The Original 1847 Edition.




Mathematical Logic through Python


Book Description

Using a unique pedagogical approach, this text introduces mathematical logic by guiding students in implementing the underlying logical concepts and mathematical proofs via Python programming. This approach, tailored to the unique intuitions and strengths of the ever-growing population of programming-savvy students, brings mathematical logic into the comfort zone of these students and provides clarity that can only be achieved by a deep hands-on understanding and the satisfaction of having created working code. While the approach is unique, the text follows the same set of topics typically covered in a one-semester undergraduate course, including propositional logic and first-order predicate logic, culminating in a proof of Gödel's completeness theorem. A sneak peek to Gödel's incompleteness theorem is also provided. The textbook is accompanied by an extensive collection of programming tasks, code skeletons, and unit tests. Familiarity with proofs and basic proficiency in Python is assumed.




The Mathematical Analysis of Logic


Book Description

The Theory of Symbolical Algebra, are aware, that the validity of the processes of analysis does not depend upon the interpretation of the symbols which are employed, but solely upon the laws of their combination. Every system of interpretation which does not affect the truth of the relations supposed, is equally admissible, and it is thus that the same process may, under one scheme of interpretation, represent the solution of a question on the properties of numbers, under another, that of a geometrical problem, and under a third, that of a problem of dynamics or optics. This principle is indeed of fundamental importance; and it may with safety be affirmed, that the recent advances of pure analysis have been much assisted by the inuence which it has exerted in directing the current of investigation. But the full recognition of the consequences of this important doctrine has been, in some measure, retarded by accidental circumstances. It has happened in every known form of analysis, that the elements to be determined have been conceived as measurable by comparison with some fixed standard. The predominant idea has been that of magnitude, or more strictly, of numerical ratio. The expression of magnitude, or of operations upon magnitude, has been the express object for which the symbols of Analysis have been invented, and for which their laws have been investigated. Thus the abstractions of the modern Analysis, not less than the ostensive diagrams of the ancient Geometry, have encouraged the notion, that Mathematics are essentially, as well as actually, the Science of Magnitude. The consideration of that view which has already been stated, as embodying the true principle of the Algebra of Symbols, would, however, lead us to infer that this conclusion is by no means necessary. If every exist ing interpretation is shewn to involve the idea of magnitude, it is only by induction that we can assert that no other interpretation is possible. And it may be doubted whether our experience is sufficient to render such an induction legitimate. The history of pure Analysis is, it may be said, too recent to permit us to set limits to the extent of its applications. Should we grant to the inference a high degree of probability, we might still, and with reason, maintain the sufficiency of the definition to which the principle already stated would lead us. We might justly assign it as the definitive character of a true Calculus, that it is a method resting upon the employment of Symbols, whose laws of combination are known and general, and whose results admit of a consistent interpretation. That to the existing forms of Analysis a quantitative interpretation is assigned, is the result of the circumstances by which those forms were determined, and is not to be construed into a universal condition of Analysis. It is upon the foundation of this general principle, that I purpose to establish the Calculus of Logic, and that I claim for it a place among the acknowledged forms of Mathematical Analysis, regardless that in its object and in its instruments it must at present stand alone. That which renders Logic possible, is the existence in our minds of general notions, "our ability to conceive of a class, and to designate its individual members by a common name. The theory of Logic" is thus intimately connected with that of Language. A successful attempt to Express logical propositions by symbols, the laws of whose combinations should be founded upon the laws of the mental processes which they represent, would, so far, be a step toward a philosophical language.




Mathematical Logic


Book Description

This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.




The Mathematical Analysis of Logic


Book Description

With this work, George Boole ushered in the digital age.




Topoi


Book Description

The first of its kind, this book presents a widely accessible exposition of topos theory, aimed at the philosopher-logician as well as the mathematician. It is suitable for individual study or use in class at the graduate level (it includes 500 exercises). It begins with a fully motivated introduction to category theory itself, moving always from the particular example to the abstract concept. It then introduces the notion of elementary topos, with a wide range of examples and goes on to develop its theory in depth, and to elicit in detail its relationship to Kripke's intuitionistic semantics, models of classical set theory and the conceptual framework of sheaf theory (``localization'' of truth). Of particular interest is a Dedekind-cuts style construction of number systems in topoi, leading to a model of the intuitionistic continuum in which a ``Dedekind-real'' becomes represented as a ``continuously-variable classical real number''.The second edition contains a new chapter, entitled Logical Geometry, which introduces the reader to the theory of geometric morphisms of Grothendieck topoi, and its model-theoretic rendering by Makkai and Reyes. The aim of this chapter is to explain why Deligne's theorem about the existence of points of coherent topoi is equivalent to the classical Completeness theorem for ``geometric'' first-order formulae.




Fundamentals of Mathematical Analysis


Book Description

Fundamentals of Mathematical Analysis explores real and functional analysis with a substantial component on topology. The three leading chapters furnish background information on the real and complex number fields, a concise introduction to set theory, and a rigorous treatment of vector spaces. Fundamentals of Mathematical Analysis is an extensive study of metric spaces, including the core topics of completeness, compactness and function spaces, with a good number of applications. The later chapters consist of an introduction to general topology, a classical treatment of Banach and Hilbert spaces, the elements of operator theory, and a deep account of measure and integration theories. Several courses can be based on the book. This book is suitable for a two-semester course on analysis, and material can be chosen to design one-semester courses on topology or real analysis. It is designed as an accessible classical introduction to the subject and aims to achieve excellent breadth and depth and contains an abundance of examples and exercises. The topics are carefully sequenced, the proofs are detailed, and the writing style is clear and concise. The only prerequisites assumed are a thorough understanding of undergraduate real analysis and linear algebra, and a degree of mathematical maturity.




Studies in Logic and Probability


Book Description

Authoritative compilation ranges from The Mathematical Analysis of Logic to the end of Boole's career. Includes The Laws of Thought, plus incomplete studies intended for a follow-up volume. 1952 edition.