The Mathematical Repository
Author :
Publisher :
Page : 430 pages
File Size : 31,17 MB
Release : 1814
Category : Mathematics
ISBN :
Author :
Publisher :
Page : 430 pages
File Size : 31,17 MB
Release : 1814
Category : Mathematics
ISBN :
Author : James Dodson
Publisher :
Page : 380 pages
File Size : 47,88 MB
Release : 1755
Category : Mathematics
ISBN :
Author : Thomas Leybourn
Publisher :
Page : 480 pages
File Size : 37,53 MB
Release : 1799
Category : Mathematics
ISBN :
Author : Thomas Leybourn
Publisher :
Page : 294 pages
File Size : 25,54 MB
Release : 1804
Category : Mathematics
ISBN :
Author : Mathematical repository
Publisher :
Page : 432 pages
File Size : 11,48 MB
Release : 1809
Category :
ISBN :
Author : Thomas Leybourn
Publisher :
Page : 436 pages
File Size : 13,87 MB
Release : 1809
Category : Mathematics
ISBN :
Author : John Martin Frederick Wright
Publisher :
Page : 484 pages
File Size : 33,35 MB
Release : 1830
Category : Mathematics
ISBN :
Author : J.M.F. Wright
Publisher :
Page : 334 pages
File Size : 44,42 MB
Release : 1830
Category : Mathematics
ISBN :
Author :
Publisher :
Page : 594 pages
File Size : 48,39 MB
Release : 1821
Category :
ISBN :
Author : Marc Peter Deisenroth
Publisher : Cambridge University Press
Page : 392 pages
File Size : 39,72 MB
Release : 2020-04-23
Category : Computers
ISBN : 1108569323
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.