Langley 16-ft. Transonic Tunnel Pressure Sensitive Paint System


Book Description

This report describes the NASA Langley 16-Ft. Transonic Tunnel Pressure Sensitive Paint (PSP) system and presents results of a test conducted June 22-23, 2000 in the tunnel to validate the PSP system. The PSP system provides global surface pressure measurements on wind tunnel models. The system was developed and installed by PSP Team personnel of the Instrumentation Systems Development Branch and the Advanced Measurement and Diagnostics Branch. A discussion of the results of the validation test follows a description of the system and a description of the test.




Flush Airdata Sensing (FADS) System Calibration Procedures and Results for Blunt Forebodies


Book Description

Blunt-forebody pressure data are used to study the behavior of the NASA Dryden Flight Research Center flush airdata sensing (FADS) pressure model and solution algorithm. The model relates surface pressure measurements to the airdata state. Spliced from the potential flow solution for uniform flow over a sphere and the modified Newtonian impact theory, the model was shown to apply to a wide range of blunt-forebody shapes and Mach numbers. Calibrations of a sphere, spherical cones, a Rankine half body, and the F-14, F/A-18, X-33, X-34, and X-38 configurations are shown. The three calibration parameters are well-behaved from Mach 0.25 to Mach 5.0, an angle-of-attack range extending to greater than 30 deg., and an angle-of-sideslip range extending to greater than 15 deg. Contrary to the sharp calibration changes found on traditional pitot-static systems at transonic speeds, the FADS calibrations are smooth, monotonic functions of Mach number and effective angles of attack and sideslip. Because the FADS calibration is sensitive to pressure port location, detailed measurements of the actual pressure port locations on the flight vehicle are required and the wind-tunnel calibration model should have pressure ports in similar locations. The procedure for calibrating a FADS system is outlined.




Wind Tunnel Test Techniques


Book Description

Wind Tunnel Test Techniques: Design and Use at Low and High Speeds with Statistical Engineering Applications provides an up-to-date treatment of the topic. Beginning with a brief history of wind tunnels and its types and uses, the book goes on to cover subsonic, supersonic and hypersonic wind tunnel design and construction, calibration, boundary corrections, flow quality assessment, pressure surveys, and dynamic testing. It also focuses on wind tunnel facilities, making it useful for both the designer and operator. Engineers and graduate students in aerospace, automotive and similar programs will find this book useful in their work with experimental aerodynamics, gas dynamics, facility design and performance. - Deals with a broad range of flow speeds in wind tunnels, from low speed to high speed - Provides a discussion of similarity laws as well as material on statistical analysis - Includes coverage on facility-to-facility and facility-to-CFD correlation - Presents advanced topics such as cryogenic wind tunnels, ground simulation in automotive testing, and propulsion testing







NASA Langley Scientific and Technical Information Output, 1995


Book Description

This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1995. Included are citations for formal reports, high-numbered conference publications, high-numbered technical memorandums, contractor reports, journal articles and other publications, meeting presentations, technical talks, computer programs, tech briefs, and patents.







Isolated Performance at Mach Numbers From 0.60 to 2.86 of Several Expendable Nozzle Concepts for Supersonic Applications


Book Description

Investigations have been conducted in the Langley 16-Foot Transonic Tunnel (at Mach numbers from 0.60 to 1.25) and in the Langley Unitary Plan Winf Tunnel (at Mach numbers from 2.16 to 2.86) at an angle of attack of O° to determine the isolated performane of several expendable nozzle concepts for supersonic noaugmented turbojet applications. The effects of centerbody base shape, shroud length, shroud ventilation, cruciform shroud expansion ration, and cruciform shroud flap vectoring were investigated. The nozzle pressure ration range, which was a function of Mach number, was between 1.9 and 11.8 in the 16-Foot Transonic Tunnel and between 7.9 and 54.9 in the Unitary Plan WInd Tunnel. Discharge coefficient, thrust-minus-drag, and the forces and moments generated by vectoring the divergent shroud flaps (for Mach numbers of 0.60 to 1.25 only) of a cruciform nozzle configuration were measured.







NASA Technical Paper


Book Description




NASA SP.


Book Description