The Origin of Geometry in India


Book Description

This book is the first complete study of the origin of geometry in India. In Ancient India, brick-built fire-altars (citi-s) were ordained for the Soma sacrifice, a Vedic rite, which led to the compilation of rule-books for making and arranging bricks. These volumes, called Śulbasūtra-s, represent the first available texts of both geometry and mensuration, and were composed from 600 BCE, although the actual practice goes back to c. 1500 BCE. This book begins by detailing the history of geometry in Egypt, Mesopotamia, and Greece, and shows that geometry everywhere starts with brick-built structures, rather than the measurement of land. It emphasizes that geometry in India, unlike in Greece, was side-based rather than angle-based. The text is profusely illustrated.




The Origin of Geometry in India


Book Description

This book is the first complete study of the origin of geometry in India. In Ancient India, brick-built fire-altars (citi-s) were ordained for the Soma sacrifice, a Vedic rite, which led to the compilation of rule-books for making and arranging bricks. These volumes, called ÅsulbasÅ«tra-s, represent the first available texts of both geometry and mensuration, and were composed from 600 BCE, although the actual practice goes back to c. 1500 BCE. This book begins by detailing the history of geometry in Egypt, Mesopotamia, and Greece, and shows that geometry everywhere starts with brick-built structures, rather than the measurement of land. It emphasizes that geometry in India, unlike in Greece, was side-based rather than angle-based. The text is profusely illustrated.




Geometry in Ancient and Medieval India


Book Description

This book is a geometrical survey of the Sanskrit and Prakrt scientific and quasi-scientific literature of India, beginning with the Vedic literature and ending with the early part of the 17th century. It deals in detail with the Sulbasutras in the Vedic literature, with the mathematical parts of Jaina Canonical works and of the Hindu Siddhantas and with the contributions to geometry made by the astronomer mathematicians Aryabhata I & II, Sripati, Bhaskara I & II, Sangamagrama Madhava, Paramesvara, Nilakantha, his disciples and a host of others. The works of the mathematicians Mahavira, Sridhara and Narayana Pandita and the Bakshali Manuscript have also been studied. The work seeks to explode the theory that the Indian mathematical genius was predominantly algebraic and computational and that it eschewed proofs and rationales. There was a school in India which delighted to demonstrate even algebraical results geometrically. In their search for a sufficiently good approximation for the value of pie Indian mathematicians had discovered the tool of integration. Which they used equally effectively for finding the surface area and volume of a sphere and in other fields. This discovery of integration was the sequel of the inextricable blending of geometry and series mathematics.




Euclid's Elements


Book Description

"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.




Geometry in History


Book Description

This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.




5000 Years of Geometry


Book Description

The present volume provides a fascinating overview of geometrical ideas and perceptions from the earliest cultures to the mathematical and artistic concepts of the 20th century. It is the English translation of the 3rd edition of the well-received German book “5000 Jahre Geometrie,” in which geometry is presented as a chain of developments in cultural history and their interaction with architecture, the visual arts, philosophy, science and engineering. Geometry originated in the ancient cultures along the Indus and Nile Rivers and in Mesopotamia, experiencing its first “Golden Age” in Ancient Greece. Inspired by the Greek mathematics, a new germ of geometry blossomed in the Islamic civilizations. Through the Oriental influence on Spain, this knowledge later spread to Western Europe. Here, as part of the medieval Quadrivium, the understanding of geometry was deepened, leading to a revival during the Renaissance. Together with parallel achievements in India, China, Japan and the ancient American cultures, the European approaches formed the ideas and branches of geometry we know in the modern age: coordinate methods, analytical geometry, descriptive and projective geometry in the 17th an 18th centuries, axiom systems, geometry as a theory with multiple structures and geometry in computer sciences in the 19th and 20th centuries. Each chapter of the book starts with a table of key historical and cultural dates and ends with a summary of essential contents of geometr y in the respective era. Compelling examples invite the reader to further explore the problems of geometry in ancient and modern times. The book will appeal to mathematicians interested in Geometry and to all readers with an interest in cultural history. From letters to the authors for the German language edition I hope it gets a translation, as there is no comparable work. Prof. J. Grattan-Guinness (Middlesex University London) "Five Thousand Years of Geometry" - I think it is the most handsome book I have ever seen from Springer and the inclusion of so many color plates really improves its appearance dramatically! Prof. J.W. Dauben (City University of New York) An excellent book in every respect. The authors have successfully combined the history of geometry with the general development of culture and history. ... The graphic design is also excellent. Prof. Z. Nádenik (Czech Technical University in Prague)




The Mathematics of India


Book Description

This book identifies three of the exceptionally fruitful periods of the millennia-long history of the mathematical tradition of India: the very beginning of that tradition in the construction of the now-universal system of decimal numeration and of a framework for planar geometry; a classical period inaugurated by Aryabhata’s invention of trigonometry and his enunciation of the principles of discrete calculus as applied to trigonometric functions; and a final phase that produced, in the work of Madhava, a rigorous infinitesimal calculus of such functions. The main highlight of this book is a detailed examination of these critical phases and their interconnectedness, primarily in mathematical terms but also in relation to their intellectual, cultural and historical contexts. Recent decades have seen a renewal of interest in this history, as manifested in the publication of an increasing number of critical editions and translations of texts, as well as in an informed analytic interpretation of their content by the scholarly community. The result has been the emergence of a more accurate and balanced view of the subject, and the book has attempted to take an account of these nascent insights. As part of an endeavour to promote the new awareness, a special attention has been given to the presentation of proofs of all significant propositions in modern terminology and notation, either directly transcribed from the original texts or by collecting together material from several texts.




Studies in the History of Indian Mathematics


Book Description

This volume is the outcome of a seminar on the history of mathematics held at the Chennai Mathematical Institute during January-February 2008 and contains articles based on the talks of distinguished scholars both from the West and from India. The topics covered include: (1) geometry in the oulvasatras; (2) the origins of zero (which can be traced to ideas of lopa in Paoini's grammar); (3) combinatorial methods in Indian music (which were developed in the context of prosody and subsequently applied to the study of tonal and rhythmic patterns in music); (4) a cross-cultural view of the development of negative numbers (from Brahmagupta (c. 628 CE) to John Wallis (1685 CE); (5) Kunnaka, Bhavana and Cakravala (the techniques developed by Indian mathematicians for the solution of indeterminate equations); (6) the development of calculus in India (covering the millennium-long history of discoveries culminating in the work of the Kerala school giving a complete analysis of the basic calculus of polynomial and trigonometrical functions); (7) recursive methods in Indian mathematics (going back to Paoini's grammar and culminating in the recursive proofs found in the Malayalam text Yuktibhaua (1530 CE)); and (8) planetary and lunar models developed by the Kerala School of Astronomy. The articles in this volume cover a substantial portion of the history of Indian mathematics and astronomy. This book will serve the dual purpose of bringing to the international community a better perspective of the mathematical heritage of India and conveying the message that much work remains to be done, namely the study of many unexplored manuscripts still available in libraries in India and abroad.




Geometry's Great Thinkers


Book Description

Introduces several mathematicians who contributed significantly to the history of geometry.




Studies in Indian Mathematics and Astronomy


Book Description

This volume presents a collection of some of the seminal articles of Professor K. S. Shukla who made immense contributions to our understanding of the history and development of mathematics and astronomy in India. It consists of six parts: Part I constitutes introductory articles which give an overview of the life and work of Prof. Shukla, including details of his publications, reminiscences from his former students, and an analysis of his monumental contributions. Part II is a collection of important articles penned by Prof. Shukla related to various aspects of Indian mathematics. Part III consists of articles by Bibhutibhusan Datta and Avadhesh Narayan Singh—which together constitute the third unpublished part of their History of Hindu Mathematics—that were revised and updated by Prof. Shukla. Parts IV and V consist of a number of important articles of Prof. Shukla on different aspects of Indian astronomy. Part VI includes some important reviews authored by him and a few reviews of his work. Given the sheer range and depth of Prof. Shukla’s scholarship, this volume is essential reading for scholars seeking to deepen their understanding of the rich and varied contributions made by Indian mathematicians and astronomers.