The Oxford Handbook of Small Superconductors


Book Description

This handbook is about a remarkable set of materials that are technically referred to as "mesoscopic superconductors", which for all practical purposes are tiny or small in their dimensions, ranging from a few micrometers down to a nanometer. At this level of smallness, the superconducting properties are dramatically changed, showing the dominance of quantum effects. Ground breaking research studies of small superconductors have emerged, and in a world obsessed with miniaturization of electronic device technology, small superconductors acquire even greater relevance and timeliness for the development of exciting novel quantum devices. The chapters, contributed by noted researchers and frontrunners in the field from 15 countries, are presented in three parts, namely progress in basic studies, materials specific research, and advances in nanodevices. The contents of the handbook should be of immediate interest to advanced level university students and researchers particularly in physics, materials science, nanoscience and engineering departments. Various reviews and overviews appearing in the book should answer the queries and curiosities of non-specialists interested in nanoscale superconductivity. At the start, the book carries an extended introduction for readers new to the field. The book should also appeal to scientists and engineers from electronic industries interested in knowing the current status of the theory, manufacture, and future of mesoscopic superconductors. In doing so, this volume offers the opportunity to engage with cutting edge research in one of the most exciting fields of physics today and tomorrow.




Oxford Handbook of Small Superconductors


Book Description

"This handbook is about a remarkable set of materials that are technically referred to as 'mesoscopic superconductors', which for all practical purposes are tiny or small in their dimensions, ranging from a few micrometers down to a nanometer. At this level of smallness, the superconducting properties are dramatically changed, showing the dominance of quantum effects. Ground breaking research studies of small superconductors have emerged, and in a world obsessed with miniaturization of electronic device technology, small superconductors acquire even greater relevance and timeliness for the development of exciting novel quantum devices. The chapters, contributed by noted researchers and frontrunners in the field from 15 countries, are presented in three parts, namely progress in basic studies, materials specific research, and advances in nanodevices. The contents of the handbook should be of immediate interest to advanced level university students and researchers particularly in physics, materials science, nanoscience and engineering departments. Various reviews and overviews appearing in the book should answer the queries and curiosities of non-specialists interested in nanoscale superconductivity. At the start, the book carries an extended introduction for readers new to the field. The book should also appeal to scientists and engineers from electronic industries interested in knowing the current status of the theory, manufacture, and future of mesoscopic superconductors. In doing so, this volume offers the opportunity to engage with cutting edge research in one of the most exciting fields of physics today and tomorrow"--Provided by publisher.




Oxford Handbook of Nanoscience and Technology


Book Description

These three volumes are intended to shape the field of nanoscience and technology and will serve as an essential point of reference for cutting-edge research in the field.




Superconductivity: A Very Short Introduction


Book Description

Superconductivity is one of the most exciting areas of research in physics today. Outlining the history of its discovery, and the race to understand its many mysterious and counter-intuitive phenomena, this Very Short Introduction explains in accessible terms the theories that have been developed, and how they have influenced other areas of science, including the Higgs boson of particle physics and ideas about the early Universe. It is an engaging and informative account of a fascinating scientific detective story, and an intelligible insight into some deep and beautiful ideas of physics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




Metals Handbook


Book Description




Theory Of Superconductivity


Book Description

Theory of Superconductivity is primarily intended to serve as a background for reading the literature in which detailed applications of the microscopic theory of superconductivity are made to specific problems.




Superconductivity, Superfluids and Condensates


Book Description

This textbook series has been designed for final year undergraduate and first year graduate students, providing an overview of the entire field showing how specialized topics are part of the wider whole, and including references to current areas of literature and research.




Fundamentals of Superconducting Nanoelectronics


Book Description

This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, PhD-students, lectures and others who would like to gain knowledge in the frontiers of superconductivity at the nanoscale.




The Oxford Handbook of Philosophy of Physics


Book Description

This Oxford Handbook provides an overview of many of the topics that currently engage philosophers of physics. It surveys new issues and the problems that have become a focus of attention in recent years. It also provides up-to-date discussions of the still very important problems that dominated the field in the past. In the late 20th Century, the philosophy of physics was largely focused on orthodox Quantum Mechanics and Relativity Theory. The measurement problem, the question of the possibility of hidden variables, and the nature of quantum locality dominated the literature on the quantum mechanics, whereas questions about relationalism vs. substantivalism, and issues about underdetermination of theories dominated the literature on spacetime. These issues still receive considerable attention from philosophers, but many have shifted their attentions to other questions related to quantum mechanics and to spacetime theories. Quantum field theory has become a major focus, particularly from the point of view of algebraic foundations. Concurrent with these trends, there has been a focus on understanding gauge invariance and symmetries. The philosophy of physics has evolved even further in recent years with attention being paid to theories that, for the most part, were largely ignored in the past. For example, the relationship between thermodynamics and statistical mechanics—-once thought to be a paradigm instance of unproblematic theory reduction—-is now a hotly debated topic. The implicit, and sometimes explicit, reductionist methodology of both philosophers and physicists has been severely criticized and attention has now turned to the explanatory and descriptive roles of "non-fundamental,'' phenomenological theories. This shift of attention includes "old'' theories such as classical mechanics, once deemed to be of little philosophical interest. Furthermore, some philosophers have become more interested in "less fundamental'' contemporary physics such as condensed matter theory. Questions abound with implications for the nature of models, idealizations, and explanation in physics. This Handbook showcases all these aspects of this complex and dynamic discipline.




Introduction to Information Retrieval


Book Description

Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.