The Photomagneton and Quantum Field Theory


Book Description

This first volume of this two-volume set deals with the important recent discovery of the photomagneton of electromagnetic radiation, a discovery which is fundamental in quantum field theory and in quantum mechanics in matter. The photomagneton is the elementary quantum of magnetic flux density carried by the individual photon in free space, and is generated directly by the intrinsic angular momentum of the free photon. The volume develops the theory of the photomagneton in a series of papers, which cover all the major aspects of the theory, from classical electrodynamics to the relativistic quantum field. Several suggestions are given for experimental tests, and the available experimental evidence is discussed in detail. The overall conclusion of the series of papers is that the photomagneton, which is observable experimentally in magneto-optical phenomena, indicates the presence in free space of a novel, longitudinal, magnetic flux density, linked ineluctably to the usual transverse components. If the photomagneton is not observed, then a paradox would have emerged at the most fundamental electrodynamical level, necessitating a modification of the Maxwell equations themselves.




Photomagneton And Quantum Field Theory, The - Volume 1 Of Quantum Chemistry


Book Description

This first volume of this two-volume set deals with the important recent discovery of the photomagneton of electromagnetic radiation, a discovery which is fundamental in quantum field theory and in quantum mechanics in matter. The photomagneton is the elementary quantum of magnetic flux density carried by the individual photon in free space, and is generated directly by the intrinsic angular momentum of the free photon. The volume develops the theory of the photomagneton in a series of papers, which cover all the major aspects of the theory, from classical electrodynamics to the relativistic quantum field. Several suggestions are given for experimental tests, and the available experimental evidence is discussed in detail. The overall conclusion of the series of papers is that the photomagneton, which is observable experimentally in magneto-optical phenomena, indicates the presence in free space of a novel, longitudinal, magnetic flux density, linked ineluctably to the usual transverse components. If the photomagneton is not observed, then a paradox would have emerged at the most fundamental electrodynamical level, necessitating a modification of the Maxwell equations themselves.




The Present Status of the Quantum Theory of Light


Book Description

THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT In August of 1995, a group of over 70 physicists met at York University for a three-day symposium in honour of Professor Jean-Pierre Vigier. The attendance included theoretical and experimental physicists, mathematicians, astronomers and colleagues concerned with issues in the philosophy of science. The symposium was entitled "The Present Status of the Quantum Theory of Light" in accordance with Professor Vigier's wishes but in fact encompassed many of the areas to which Professor Vigier has contributed over his long and distinguished career. These include stochastic interpretations of quantum mechanics, particle physics, and electromagnetic theory. The papers presented at the symposium have been arranged in this proceedings in the following approximate order: ideas about the nature of light and photons, electrodynamiCS, the formulation and interpretation of quantum mechanics, and aspects of relativity theory. Some of the papers presented deal with alternate interpretations of quantum phenomena in the tradition of Vigier, Bohm et al. These interpretations reject the account given in purely probabilistic terms and which deems individual quantum events to be acausal and not amenable to any analysis in space-time terms. As is well known, Einstein and others also rejected the purely statistical account of quantum mechanics. As stressed by Professor Vigier at the symposium, the current experimental situation now allows for the first time for individual quantum events to be studied, e. g.




Classical and Quantum Electrodynamics and the B(3) Field


Book Description

It is well known that classical electrodynamics is riddled with internal inconsistencies springing from the fact that it is a linear, Abelian theory in which the potentials are unphysical. This volume offers a self-consistent hypothesis which removes some of these problems, as well as builds a framework on which linear and nonlinear optics are treated as a non-Abelian gauge field theory based on the emergence of the fundamental magnetizing field of radiation, the B(3) field. Contents: Interaction of Electromagnetic Radiation with One Fermion; The Field Equations of Classical O (3) b Electrodynamics; Origin of Electrodynamics in the General Theory of Gauge Fields; Nonlinear Propagation in O (3) b Electrodynamics: Solitons and Instantons; Physical Phase Effects in O (3) b Electrodynamics; Quantum Electrodynamics and the B (3) Field; Quantum Chaos, Topological Indices and Gauge Theories; Field Theory of O (3) b QED and Unification with Weak and Nuclear Interactions; Potential Applications of O (3) b QED; Duality and Fundamental Problems. Readership: Graduate and undergraduates in physics (electromagnetism), differential geometry & topology, electrical & electronic engineering, theoretical & physical chemistry, chaos and dynamical systems.




Towards a Nonlinear Quantum Physics


Book Description

The author of this book presents conceptual and experimental evidence showing that Heisenberg''s uncertainty relations are not valid in all cases. Furthermore, he derives a more general set of uncertainty relations. The new relations result from the replacement of the Fourier nonlocal and nontemporal paradigm by wavelet local analysis. These results lead to a coherent and beautiful causal synthesis unifying quantum and classical physics.




Generally Covariant Unified Field Theory


Book Description

This book is the first to describe a very successful objective unified field theory which emerged in 2003 and which is already mainstream physics -Einstein Cartan Evans (ECE)field theory.The latter completes the well known work of Einstein and Cartan, who from 1925 to 1955 sought to unify field theory in physics with the principles of general relativity.These principles are based on the need for objectivity in natural philosophy, were first suggested by Francis Bacon in the sixteenth century and developed into general relativity in about 1915.In this year, using Riemann geometry, Einstein and Hilbert independently arrived at an objective field equation for gravitation.Since then there have been many attempts to unify the 1915 gravitational theory with the other three fundamental fields: electromagnetism, the weak and strong fields. As described for the first time in this book, unification is achieved straightforwardly with the principles of standard Cartan geometry and the Evans Ansatz.The latter shows that electromagnetism is spinning spacetime, gravitation is curving spacetime and that they are unified with the structure (or master)equations of Cartan.Quantum mechanics is unified with general relativity using the Evans Lemma and wave equation.Technical appendices and charts are provided which show how all the major equations of physics are obtained from the ECE field theory and two introductory chapters describe the background mathematics from an elementary level. In this third volume, ECE theory is extended to the Sagnac effect and Faraday disc generator to show that electrodynamics is spinning space-time in general relativity.These two effects are difficult to explain with special relativity.A simplified dielectric ECE theory is developed and applied for example to cosmology.One chapter is dedicated to a convenient summary of all the details of Cartan geometry needed to develop ECE theory.The important topic of spin connection resonance (SCR)is introduced and applied to new energy and counter-gravitation.Finally wave mechanics is developed in ECE




Generally Covariant Unified Field Theory


Book Description

This book is the first to describe a very successful objective unified field theory which emerged in 2003 and which is already mainstream physics - Einstein Cartan Evans (ECE) field theory. The latter completes the well known work of Einstein and Cartan, who from 1925 to 1955 sought to unify field theory in physics with the principles of general relativity. These principles are based on the need for objectivity in natural philosophy, were first suggested by Francis Bacon in the sixteenth century and developed into general relativity in about 1915. In this year, using Riemann geometry, Einstein and Hilbert independently arrived at an objective field equation for gravitation. Since then there have been many attempts to unify the 1915 gravitational theory with the other three fundamental fields: electromagnetism, the weak and strong fields. As described for the first time in this book, unification is achieved straightforwardly with the principles of standard Cartan geometry and the Evans Ansatz. The latter shows that electromagnetism is spinning spacetime, gravitation is curving spacetime and that they are unified with the structure (or master) equations of Cartan. Quantum mechanics is unified with general relativity using the Evans Lemma and wave equation. Technical appendices and charts are provided which show how all the major equations of physics are obtained from the ECE field theory and two introductory chapters describe the background mathematics from an elementary level. The mathematical structure of ECE field theory is standard Cartan geometry, also known as differential geometry. The main topics of contemporary physics are covered in individual chapters, which also describe the conditions under which ECE theory reduces to Einstein Hilbert (EH) theory, and to Maxwell Heaviside field theory in classical electrodynamics. The Dirac equation is derived as a limit of the wave equation of ECE theory. The Schrodinger and Newton equations then follow as limits of the Dirac equation. It is therefore shown that ECE field theory provides, for the first time, a structure for the objective unification of field theory in natural philosophy.




The Enigmatic Photon


Book Description

This volume establishes the fact that electrodynamics is by no means a completely understood theory by bringing together several in-depth review papers from leading specialists. The major portion of the volume is built around the nonlinear structure which leads to the B(3) field introduced in the previous three volumes published. Audience: Specialists, graduate and senior undergraduate students in physics, chemistry and electrical engineering.




Acta Physica Polonica


Book Description




Modern Nonlinear Optics


Book Description




Recent Books