The Principal Rare Earth Elements Deposits of the United States-A Summary of Domestic Deposits and a Global Perspective


Book Description

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.




Critical Mineral Resources of the United States


Book Description

As the importance and dependence of specific mineral commodities increase, so does concern about their supply. The United States is currently 100 percent reliant on foreign sources for 20 mineral commodities and imports the majority of its supply of more than 50 mineral commodities. Mineral commodities that have important uses and face potential supply disruption are critical to American economic and national security. However, a mineral commodity's importance and the nature of its supply chain can change with time; a mineral commodity that may not have been considered critical 25 years ago may be critical today, and one considered critical today may not be so in the future. The U.S. Geological Survey has produced this volume to describe a select group of mineral commodities currently critical to our economy and security. For each mineral commodity covered, the authors provide a comprehensive look at (1) the commodity's use; (2) the geology and global distribution of the mineral deposit types that account for the present and possible future supply of the commodity; (3) the current status of production, reserves, and resources in the United States and globally; and (4) environmental considerations related to the commodity's production from different types of mineral deposits. The volume describes U.S. critical mineral resources in a global context, for no country can be self-sufficient for all its mineral commodity needs, and the United States will always rely on global mineral commodity supply chains. This volume provides the scientific understanding of critical mineral resources required for informed decisionmaking by those responsible for ensuring that the United States has a secure and sustainable supply of mineral commodities.




Principal Rare Earth Elements Deposits of the U. S.


Book Description

The rare earth elements (REE) are 15 elements with atomic no. 57 through 71, from lanthanum to lutetium, plus yttrium. Although industrial demand for these elements is relatively small in tonnage terms, they are essential for a diverse and expanding array of high-tech applications. REE-containing magnets, metal alloys for batteries and lightweight structures, and phosphors are essential for many current and emerging alternative energy technologies, such as electric vehicles, energy-efficient lighting, and wind power. REE are also critical for a number of key defense systems. This study provides a non-technical overview of domestic reserves and resources of REE and possibilities for utilizing those resources. Illus. This is a print on demand report.




Non-Renewable Resource Issues


Book Description

All the solid fuels fossil energy and mineral commodities we use come out of the Earth. Modern society is increasingly dependent on mineral and fossil energy sources. They differ in availability, cost of production, and geographical distribution. Even if solid fuels, fossil energy resources and mineral commodities are non-renewable, the extracted metals can to a large extent be recycled and used again and again. Although the stock of these secondary resources and their use increases, the world still needs and will continue to need primary mineral resources for the foreseeable future. Growing demands have begun to restrict availability of these resources. The Earth is not running out of critical mineral resources – at least for the near future – but the ability to explore and extract these resources is being restricted in many regions by competing land use, as well as political and environmental issues. Extraction of natural resources requires a clear focus on sustainable development, involving economic, environmental and socio-cultural aspects. Although we do not know what the most important resources will be in 100 years from now, we can be quite certain that society will still need energy and a wide range of raw materials. These resources will include oil and gas, coal, uranium, thorium, geothermal, metallic minerals, industrial and specialty minerals, including cement, raw materials, rare-earth elements. A global approach for assessing the magnitude and future availability of these resources is called for – an approach that, with appropriate international collaboration, was started within the triennium of the International Year of Planet Earth. Some global mineral resource assessments, involving inter-governmental collaboration, have already been initiated. The International Year of Planet Earth helped to focus attention on how the geosciences can generate prosperity locally and globally, as well as sustainability issues in both developed and developing countries.




Lanthanides, Tantalum and Niobium


Book Description

Rare Earth Elements (REE) as well as tantalum and niobium are of tremendous importance because of their specific high-technology applications. The contributions gathered in this volume give an up-to-date survey on the mineralogy, primary ore deposits, prospecting, processing and applications of REE, Ta, and Nd, making this volume a useful handbook for practitioners and students. Finally, the comprehensive coverage of the fundamental aspects, especially as regards REE as tracers of geological phenomena, will prove extremely helpful.




Extractive Metallurgy of Niobium


Book Description

The growth and development witnessed today in modern science, engineering, and technology owes a heavy debt to the rare, refractory, and reactive metals group, of which niobium is a member. Extractive Metallurgy of Niobium presents a vivid account of the metal through its comprehensive discussions of properties and applications, resources and resource processing, chemical processing and compound preparation, metal extraction, and refining and consolidation. Typical flow sheets adopted in some leading niobium-producing countries for the beneficiation of various niobium sources are presented, and various chemical processes for producing pure forms of niobium intermediates such as chloride, fluoride, and oxide are discussed. The book also explains how to liberate the metal from its intermediates and describes the physico-chemical principles involved. It is an excellent reference for chemical metallurgists, hydrometallurgists, extraction and process metallurgists, and minerals processors. It is also valuable to a wide variety of scientists, engineers, technologists, and students interested in the topic.




Rare Earth Frontiers


Book Description

"Rare Earth Frontiers is a timely text. As Klinger notes, rare earths are neither rare nor technically earths, but they are still widely believed to be both. Although her approach focuses on the human, or cultural, geography of rare earths mining, she does not ignore the geological occurrence of these mineral types, both on Earth and on the moon.... This volume is excellently organized, insightfully written, and extensively sourced."―Choice Drawing on ethnographic, archival, and interview data gathered in local languages and offering possible solutions to the problems it documents, this book examines the production of the rare earth frontier as a place, a concept, and a zone of contestation, sacrifice, and transformation. Rare Earth Frontiers is a work of human geography that serves to demystify the powerful elements that make possible the miniaturization of electronics, green energy and medical technologies, and essential telecommunications and defense systems. Julie Michelle Klinger draws attention to the fact that the rare earths we rely on most are as common as copper or lead, and this means the implications of their extraction are global. Klinger excavates the rich historical origins and ongoing ramifications of the quest to mine rare earths in ever more impossible places. Klinger writes about the devastating damage to lives and the environment caused by the exploitation of rare earths. She demonstrates in human terms how scarcity myths have been conscripted into diverse geopolitical campaigns that use rare earth mining as a pretext to capture spaces that have historically fallen beyond the grasp of centralized power. These include legally and logistically forbidding locations in the Amazon, Greenland, and Afghanistan, and on the Moon.




The Rare Earth Elements


Book Description

This book deals with the rare earth elements (REE), which are a series of 17 transition metals: scandium, yttrium and the lanthanide series of elements (lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium). They are relatively unknown to the wider public, despite their numerous applications and their critical role in many high-tech applications, such as high-temperature superconductors, phosphors (for energy-saving lamps, flat-screen monitors and flat-screen televisions), rechargeable batteries (household and automotive), very strong permanent magnets (used for instance in wind turbines and hard-disk drives), or even in a medical MRI application. This book describes the history of their discovery, the major REE ore minerals and the major ore deposits that are presently being exploited (or are planned to be exploited in the very near future), the physical and chemical properties of REEs, the mineral processing of REE concentrates and their extractive metallurgy, the applications of these elements, their economic aspects and the influential economical role of China, and finally the recycling of the REE, which is an emerging field.







Critical Materials Strategy


Book Description

This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DoE) based on data collected and research performed during 2010. In the report, DoE describes plans to: (1) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the DoE during November and December 2010; (2) strengthen its capacity for information-gathering on this topic; and (3) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. Charts and tables. This is a print on demand report.