The Private Code and Post-Card Cipher ... for Family Use... - Primary Source Edition


Book Description

This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ The Private Code And Post-card Cipher ... For Family Use null Constance Johnson Putnam, 1914 Cipher and telegraph codes







Applied Cryptography


Book Description

From the world's most renowned security technologist, Bruce Schneier, this 20th Anniversary Edition is the most definitive reference on cryptography ever published and is the seminal work on cryptography. Cryptographic techniques have applications far beyond the obvious uses of encoding and decoding information. For developers who need to know about capabilities, such as digital signatures, that depend on cryptographic techniques, there's no better overview than Applied Cryptography, the definitive book on the subject. Bruce Schneier covers general classes of cryptographic protocols and then specific techniques, detailing the inner workings of real-world cryptographic algorithms including the Data Encryption Standard and RSA public-key cryptosystems. The book includes source-code listings and extensive advice on the practical aspects of cryptography implementation, such as the importance of generating truly random numbers and of keeping keys secure. ". . .the best introduction to cryptography I've ever seen. . . .The book the National Security Agency wanted never to be published. . . ." -Wired Magazine ". . .monumental . . . fascinating . . . comprehensive . . . the definitive work on cryptography for computer programmers . . ." -Dr. Dobb's Journal ". . .easily ranks as one of the most authoritative in its field." -PC Magazine The book details how programmers and electronic communications professionals can use cryptography-the technique of enciphering and deciphering messages-to maintain the privacy of computer data. It describes dozens of cryptography algorithms, gives practical advice on how to implement them into cryptographic software, and shows how they can be used to solve security problems. The book shows programmers who design computer applications, networks, and storage systems how they can build security into their software and systems. With a new Introduction by the author, this premium edition will be a keepsake for all those committed to computer and cyber security.




Understanding Cryptography


Book Description

Cryptography is now ubiquitous – moving beyond the traditional environments, such as government communications and banking systems, we see cryptographic techniques realized in Web browsers, e-mail programs, cell phones, manufacturing systems, embedded software, smart buildings, cars, and even medical implants. Today's designers need a comprehensive understanding of applied cryptography. After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations. The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book’s website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.




Cryptography and Network Security


Book Description

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. The Principles and Practice of Cryptography and Network Security Stallings’ Cryptography and Network Security, Seventh Edition, introduces the reader to the compelling and evolving field of cryptography and network security. In an age of viruses and hackers, electronic eavesdropping, and electronic fraud on a global scale, security is paramount. The purpose of this book is to provide a practical survey of both the principles and practice of cryptography and network security. In the first part of the book, the basic issues to be addressed by a network security capability are explored by providing a tutorial and survey of cryptography and network security technology. The latter part of the book deals with the practice of network security: practical applications that have been implemented and are in use to provide network security. The Seventh Edition streamlines subject matter with new and updated material — including Sage, one of the most important features of the book. Sage is an open-source, multiplatform, freeware package that implements a very powerful, flexible, and easily learned mathematics and computer algebra system. It provides hands-on experience with cryptographic algorithms and supporting homework assignments. With Sage, the reader learns a powerful tool that can be used for virtually any mathematical application. The book also provides an unparalleled degree of support for the reader to ensure a successful learning experience.




Introduction to Modern Cryptography


Book Description

Now the most used texbook for introductory cryptography courses in both mathematics and computer science, the Third Edition builds upon previous editions by offering several new sections, topics, and exercises. The authors present the core principles of modern cryptography, with emphasis on formal definitions, rigorous proofs of security.




Quantum Computing and the Financial System: Spooky Action at a Distance?


Book Description

The era of quantum computing is about to begin, with profound implications for the global economy and the financial system. Rapid development of quantum computing brings both benefits and risks. Quantum computers can revolutionize industries and fields that require significant computing power, including modeling financial markets, designing new effective medicines and vaccines, and empowering artificial intelligence, as well as creating a new and secure way of communication (quantum Internet). But they would also crack many of the current encryption algorithms and threaten financial stability by compromising the security of mobile banking, e-commerce, fintech, digital currencies, and Internet information exchange. While the work on quantum-safe encryption is still in progress, financial institutions should take steps now to prepare for the cryptographic transition, by assessing future and retroactive risks from quantum computers, taking an inventory of their cryptographic algorithms (especially public keys), and building cryptographic agility to improve the overall cybersecurity resilience.




Cryptography: The Key to Digital Security, How It Works, and Why It Matters


Book Description

A “must-read” (Vincent Rijmen) nuts-and-bolts explanation of cryptography from a leading expert in information security. Despite its reputation as a language only of spies and hackers, cryptography plays a critical role in our everyday lives. Though often invisible, it underpins the security of our mobile phone calls, credit card payments, web searches, internet messaging, and cryptocurrencies—in short, everything we do online. Increasingly, it also runs in the background of our smart refrigerators, thermostats, electronic car keys, and even the cars themselves. As our daily devices get smarter, cyberspace—home to all the networks that connect them—grows. Broadly defined as a set of tools for establishing security in this expanding cyberspace, cryptography enables us to protect and share our information. Understanding the basics of cryptography is the key to recognizing the significance of the security technologies we encounter every day, which will then help us respond to them. What are the implications of connecting to an unprotected Wi-Fi network? Is it really so important to have different passwords for different accounts? Is it safe to submit sensitive personal information to a given app, or to convert money to bitcoin? In clear, concise writing, information security expert Keith Martin answers all these questions and more, revealing the many crucial ways we all depend on cryptographic technology. He demystifies its controversial applications and the nuances behind alarming headlines about data breaches at banks, credit bureaus, and online retailers. We learn, for example, how encryption can hamper criminal investigations and obstruct national security efforts, and how increasingly frequent ransomware attacks put personal information at risk. Yet we also learn why responding to these threats by restricting the use of cryptography can itself be problematic. Essential reading for anyone with a password, Cryptography offers a profound perspective on personal security, online and off.




The Code Book: The Secrets Behind Codebreaking


Book Description

"As gripping as a good thriller." --The Washington Post Unpack the science of secrecy and discover the methods behind cryptography--the encoding and decoding of information--in this clear and easy-to-understand young adult adaptation of the national bestseller that's perfect for this age of WikiLeaks, the Sony hack, and other events that reveal the extent to which our technology is never quite as secure as we want to believe. Coders and codebreakers alike will be fascinated by history's most mesmerizing stories of intrigue and cunning--from Julius Caesar and his Caeser cipher to the Allies' use of the Enigma machine to decode German messages during World War II. Accessible, compelling, and timely, The Code Book is sure to make readers see the past--and the future--in a whole new way. "Singh's power of explaining complex ideas is as dazzling as ever." --The Guardian




Cryptography Made Simple


Book Description

In this introductory textbook the author explains the key topics in cryptography. He takes a modern approach, where defining what is meant by "secure" is as important as creating something that achieves that goal, and security definitions are central to the discussion throughout. The author balances a largely non-rigorous style — many proofs are sketched only — with appropriate formality and depth. For example, he uses the terminology of groups and finite fields so that the reader can understand both the latest academic research and "real-world" documents such as application programming interface descriptions and cryptographic standards. The text employs colour to distinguish between public and private information, and all chapters include summaries and suggestions for further reading. This is a suitable textbook for advanced undergraduate and graduate students in computer science, mathematics and engineering, and for self-study by professionals in information security. While the appendix summarizes most of the basic algebra and notation required, it is assumed that the reader has a basic knowledge of discrete mathematics, probability, and elementary calculus.