The Scalar-Tensor Theory of Gravitation


Book Description

A pedagogical overview of the theoretical ideas behind the cosmological constant problem, in particular the scalar-tensor theory, which is one of the most popular alternative theories of gravitation. Covering many developments in the field, including branes and quintessence, it will be an invaluable resource for graduate students and researchers alike.




The Scalar-Tensor Theory of Gravitation


Book Description

The scalar-tensor theory of gravitation moved into the limelight in recent years due to developments in string theory, M-theory and "brane world" constructions. This book introduces the subject at a level suitable for both graduate students and researchers. It explores scalar fields, placing them in context with a discussion of Brans-Dicke theory, covering the cosmological constant problem, higher dimensional space-time, branes and conformal transformations.




Cosmology in Scalar-Tensor Gravity


Book Description

Cosmology in Scalar-Tensor Gravity covers all aspects of cosmology in scalar-tensor theories of gravity. Considerable progress has been made in this exciting area of physics and this book is the first to provide a critical overview of the research. Among the topics treated are: -Scalar-tensor gravity and its limit to general relativity, -Effective energy-momentum tensors and conformal frames, -Gravitational waves in scalar-tensor cosmology, -Specific scalar-tensor theories, -Exact cosmological solutions and cosmological perturbations, -Scalar-tensor scenarios of the early universe and inflation, -Scalar-tensor models of quintessence in the present universe and their far-reaching consequences for the ultimate fate of the cosmos.




Modifications of Einstein's Theory of Gravity at Large Distances


Book Description

In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories. In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments. Edited and authored by leading researchers in the field and cast into the form of a multi-author textbook at postgraduate level, this volume will be of benefit to all postgraduate students and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.




100 Years of Gravity and Accelerated Frames


Book Description

This collection of papers presents ideas and problems arising over the past 100 years regarding classical and quantum gravity, gauge theories of gravity, and spacetime transformations of accelerated frames. Both Einstein's theory of gravity and the Yang-Mills theory are gauge invariant. The invariance principles in physics have transcended both kinetic and dynamic properties and are at the very heart of our understanding of the physical world. In this spirit, this book attempts to survey the development of various formulations for gravitational and Yang-Mills fields and spacetime transformations of accelerated frames, and to reveal their associated problems and limitations.The aim is to present some of the leading ideas and problems discussed by physicists and mathematicians. We highlight three aspects: formulations of gravity as a Yang-Mills field, first discussed by Utiyama; problems of gravitational theory, discussed by Feynman, Dyson and others; spacetime properties and the physics of fields and particles in accelerated frames of reference.These unfulfilled aspects of Einstein and Yang-Mills' profound thoughts present a great challenge to physicists and mathematicians in the 21st century.




Theory and Experiment in Gravitational Physics


Book Description

A comprehensive review of the testing and research conducted on Einstein's theory of general relativity.




Gravitation and Spacetime


Book Description

This text provides a quantitative introduction to general relativity for advanced undergraduate and graduate students.




Introduction To General Relativity And Cosmology


Book Description

Introduction to General Relativity and Cosmology gives undergraduate students an overview of the fundamental ideas behind the geometric theory of gravitation and spacetime. Through pointers on how to modify and generalise Einstein's theory to enhance understanding, it provides a link between standard textbook content and current research in the field.Chapters present complicated material practically and concisely, initially dealing with the mathematical foundations of the theory of relativity, in particular differential geometry. This is followed by a discussion of the Einstein field equations and their various properties. Also given is analysis of the important Schwarzschild solutions, followed by application of general relativity to cosmology. Questions with fully worked answers are provided at the end of each chapter to aid comprehension and guide learning. This pared down textbook is specifically designed for new students looking for a workable, simple presentation of some of the key theories in modern physics and mathematics.




Gravitation


Book Description

Covering all aspects of gravitation in a contemporary style, this advanced textbook is ideal for graduate students and researchers in all areas of theoretical physics. The 'Foundation' section develops the formalism in six chapters, and uses it in the next four chapters to discuss four key applications - spherical spacetimes, black holes, gravitational waves and cosmology. The six chapters in the 'Frontier' section describe cosmological perturbation theory, quantum fields in curved spacetime, and the Hamiltonian structure of general relativity, among several other advanced topics, some of which are covered in-depth for the first time in a textbook. The modular structure of the book allows different sections to be combined to suit a variety of courses. Over 200 exercises are included to test and develop the reader's understanding. There are also over 30 projects, which help readers make the transition from the book to their own original research.




Beyond Einstein Gravity


Book Description

Beyond Einstein’s Gravity is a graduate level introduction to extended theories of gravity and cosmology, including variational principles, the weak-field limit, gravitational waves, mathematical tools, exact solutions, as well as cosmological and astrophysical applications. The book provides a critical overview of the research in this area and unifies the existing literature using a consistent notation. Although the results apply in principle to all alternative gravities, a special emphasis is on scalar-tensor and f(R) theories. They were studied by theoretical physicists from early on, and in the 1980s they appeared in attempts to renormalize General Relativity and in models of the early universe. Recently, these theories have seen a new lease of life, in both their metric and metric-affine versions, as models of the present acceleration of the universe without introducing the mysterious and exotic dark energy. The dark matter problem can also be addressed in extended gravity. These applications are contributing to a deeper understanding of the gravitational interaction from both the theoretical and the experimental point of view. An extensive bibliography guides the reader into more detailed literature on particular topics.