The Scholar and the State: In Search of Van der Waerden


Book Description

Bartel Leendert van der Waerden made major contributions to algebraic geometry, abstract algebra, quantum mechanics, and other fields. He liberally published on the history of mathematics. His 2-volume work Modern Algebra is one of the most influential and popular mathematical books ever written. It is therefore surprising that no monograph has been dedicated to his life and work. Van der Waerden’s record is complex. In attempting to understand his life, the author assembled thousands of documents from numerous archives in Germany, the Netherlands, Switzerland and the United States which revealed fascinating and often surprising new information about van der Waerden. Soifer traces Van der Waerden’s early years in a family of great Dutch public servants, his life as professor in Leipzig during the entire Nazi period, and his personal and professional friendship with one of the great physicists Werner Heisenberg. We encounter heroes and villains and a much more numerous group in between these two extremes. One of them is the subject of this book. Soifer’s journey through a long list of archives, combined with an intensive correspondence, had uncovered numerous details of Van der Waerden’s German intermezzo that raised serious questions and reproaches. Dirk van Dalen (Philosophy, Utrecht University) Professor Soifer’s book implicates the anthropologists’ and culture historians’ core interest in the evolution of culture and in the progress of human evolution itself on this small contested planet. James W. Fernandez (Anthropology, University of Chicago) The book is fascinating. Professor Soifer has done a great service to the discipline of history, as well as deepening our understanding of the 20th century. Peter D. Johnson, Jr. (Mathematics, Auburn University) This book is an important contribution to the history of the twentieth century, and reads like a novel with an ever-fascinating cast of characters. Harold W. Kuhn (Mathematics, Princeton University) This is a most impressive and important book. It is written in an engaging, very personal style and challenges the reader’s ability of moral and historical judgment. While it is not always written in the style of ‘objective’ professional historiography, it satisfies very high standards of scholarly documentation. Indeed the book contains a wealth of source material that allows the reader to form a highly detailed picture of the events and personalities discussed in the book. As an exemplar of historical writing in a broader sense it can compete with any other historical book. Moritz Epple (History of Mathematics, Frankfurt University)




Mathematical Correspondences and Critical Editions


Book Description

Mathematical correspondence offers a rich heritage for the history of mathematics and science, as well as cultural history and other areas. It naturally covers a vast range of topics, and not only of a scientific nature; it includes letters between mathematicians, but also between mathematicians and politicians, publishers, and men or women of culture. Wallis, Leibniz, the Bernoullis, D'Alembert, Condorcet, Lagrange, Gauss, Hermite, Betti, Cremona, Poincaré and van der Waerden are undoubtedly authors of great interest and their letters are valuable documents, but the correspondence of less well-known authors, too, can often make an equally important contribution to our understanding of developments in the history of science. Mathematical correspondences also play an important role in the editions of collected works, contributing to the reconstruction of scientific biographies, as well as the genesis of scientific ideas, and in the correct dating and interpretation of scientific writings. This volume is based on the symposium “Mathematical Correspondences and Critical Editions,” held at the 6th International Conference of the ESHS in Lisbon, Portugal in 2014. In the context of the more than fifteen major and minor editions of mathematical correspondences and collected works presented in detail, the volume discusses issues such as • History and prospects of past and ongoing edition projects, • Critical aspects of past editions, • The complementary role of printed and digital editions, • Integral and partial editions of correspondence, • Reproduction techniques for manuscripts, images and formulae, and the editorial challenges and opportunities presented by digital technology.







Basics of Ramsey Theory


Book Description

Basics of Ramsey Theory serves as a gentle introduction to Ramsey theory for students interested in becoming familiar with a dynamic segment of contemporary mathematics that combines ideas from number theory and combinatorics. The core of the of the book consists of discussions and proofs of the results now universally known as Ramsey’s theorem, van der Waerden’s theorem, Schur’s theorem, Rado’s theorem, the Hales–Jewett theorem, and the Happy End Problem of Erdős and Szekeres. The aim is to present these in a manner that will be challenging but enjoyable, and broadly accessible to anyone with a genuine interest in mathematics. Features Suitable for any undergraduate student who has successfully completed the standard calculus sequence of courses and a standard first (or second) year linear algebra course Filled with visual proofs of fundamental theorems Contains numerous exercises (with their solutions) accessible to undergraduate students Serves as both a textbook or as a supplementary text in an elective course in combinatorics and aimed at a diverse group of students interested in mathematics




Emmy Noether – Mathematician Extraordinaire


Book Description

Although she was famous as the "mother of modern algebra," Emmy Noether’s life and work have never been the subject of an authoritative scientific biography. Emmy Noether – Mathematician Extraordinaire represents the most comprehensive study of this singularly important mathematician to date. Focusing on key turning points, it aims to provide an overall interpretation of Noether’s intellectual development while offering a new assessment of her role in transforming the mathematics of the twentieth century. Hermann Weyl, her colleague before both fled to the United States in 1933, fully recognized that Noether’s dynamic school was the very heart and soul of the famous Göttingen community. Beyond her immediate circle of students, Emmy Noether’s lectures and seminars drew talented mathematicians from all over the world. Four of the most important were B.L. van der Waerden, Pavel Alexandrov, Helmut Hasse, and Olga Taussky. Noether’s classic papers on ideal theory inspired van der Waerden to recast his research in algebraic geometry. Her lectures on group theory motivated Alexandrov to develop links between point set topology and combinatorial methods. Noether’s vision for a new approach to algebraic number theory gave Hasse the impetus to pursue a line of research that led to the Brauer–Hasse–Noether Theorem, whereas her abstract style clashed with Taussky’s approach to classical class field theory during a difficult time when both were trying to find their footing in a foreign country. Although similar to Proving It Her Way: Emmy Noether, a Life in Mathematics, this lengthier study addresses mathematically minded readers. Thus, it presents a detailed analysis of Emmy Noether’s work with Hilbert and Klein on mathematical problems connected with Einstein’s theory of relativity. These efforts culminated with her famous paper "Invariant Variational Problems," published one year before she joined the Göttingen faculty in 1919.




The Colorado Mathematical Olympiad: The Third Decade and Further Explorations


Book Description

Now in its third decade, the Colorado Mathematical Olympiad (CMO), founded by the author, has become an annual state-wide competition, hosting many hundreds of middle and high school contestants each year. This book presents a year-by-year history of the CMO from 2004–2013 with all the problems from the competitions and their solutions. Additionally, the book includes 10 further explorations, bridges from solved Olympiad problems to ‘real’ mathematics, bringing young readers to the forefront of various fields of mathematics. This book contains more than just problems, solutions, and event statistics — it tells a compelling story involving the lives of those who have been part of the Olympiad, their reminiscences of the past and successes of the present. I am almost speechless facing the ingenuity and inventiveness demonstrated in the problems proposed in the third decade of these Olympics. However, equally impressive is the drive and persistence of the originator and living soul of them. It is hard for me to imagine the enthusiasm and commitment needed to work singlehandedly on such an endeavor over several decades. —Branko Grünbaum, University of Washingtonp/ppiAfter decades of hunting for Olympiad problems, and struggling to create Olympiad problems, he has become an extraordinary connoisseur and creator of Olympiad problems. The Olympiad problems were very good, from the beginning, but in the third decade the problems have become extraordinarily good. Every brace of 5 problems is a work of art. The harder individual problems range in quality from brilliant to work-of-genius... The same goes for the “Further Explorations” part of the book. Great mathematics and mathematical questions are immersed in a sauce of fascinating anecdote and reminiscence. If you could have only one book to enjoy while stranded on a desert island, this would be a good choice. /ii/i/psup/supp/ppiLike Gauss, Alexander Soifer would not hesitate to inject Eureka! at the right moment. Like van der Waerden, he can transform a dispassionate exercise in logic into a compelling account of sudden insights and ultimate triumph./ii/i/pp— Cecil Rousseau Chair, USA Mathematical Olympiad Committee/ppiA delightful feature of the book is that in the second part more related problems are discussed. Some of them are still unsolved./ii/i/pp—Paul Erdős/ppiThe book is a gold mine of brilliant reasoning with special emphasis on the power and beauty of coloring proofs. Strongly recommended to both serious and recreational mathematicians on all levels of expertise./i/p —Martin Gardner




Milestones in Analog and Digital Computing


Book Description

This Third Edition is the first English-language edition of the award-winning Meilensteine der Rechentechnik; illustrated in full color throughout in two volumes. The Third Edition is devoted to both analog and digital computing devices, as well as the world's most magnificient historical automatons and select scientific instruments (employed in astronomy, surveying, time measurement, etc.). It also features detailed instructions for analog and digital mechanical calculating machines and instruments, and is the only such historical book with comprehensive technical glossaries of terms not found in print or in online dictionaries. The book also includes a very extensive bibliography based on the literature of numerous countries around the world. Meticulously researched, the author conducted a worldwide survey of science, technology and art museums with their main holdings of analog and digital calculating and computing machines and devices, historical automatons and selected scientific instruments in order to describe a broad range of masterful technical achievements. Also covering the history of mathematics and computer science, this work documents the cultural heritage of technology as well.




The Scientific World of Karl-Friedrich Bonhoeffer


Book Description

In twentieth-century Germany, Karl-Friedrich Bonhoeffer rose to prominence as a brilliant physical chemist, even as several of his relatives—Dietrich Bonhoeffer among them—became involved in the resistance to Hitler, leading to their executions. This book traces the entanglement of science, religion, and politics in the Third Reich and in the lives of Karl-Friedrich, his family and his colleagues, including Fritz Haber and Werner Heisenberg. Nominated for the Nobel Prize, Karl-Friedrich was an expert on heavy water, a component of the atomic bomb. During the war, he was caught in the middle between relatives who were trying to kill Hitler and friends who were helping Hitler build a nuclear weapon. Karl-Friedrich emerges as a complex figure—an agnostic whose brother was a renowned theologian, and a chemist who both reluctantly advised German nuclear scientists and collaborated with Paul Rosbaud, a spy for the British. Illuminating the uneasy position of science in twentieth-century Germany, The Scientific World of Karl-Friedrich Bonhoeffer is the story of a man in love with chemistry, his family, and his nation, trying to do right by all of them in the midst of chaos.




The Best Writing on Mathematics 2016


Book Description

The year's finest mathematics writing from around the world This annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2016 makes available to a wide audience many articles not easily found anywhere else—and you don't need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today's hottest mathematical debates. Here Burkard Polster shows how to invent your own variants of the Spot It! card game, Steven Strogatz presents young Albert Einstein's proof of the Pythagorean Theorem, Joseph Dauben and Marjorie Senechal find a treasure trove of math in New York's Metropolitan Museum of Art, and Andrew Gelman explains why much scientific research based on statistical testing is spurious. In other essays, Brian Greene discusses the evolving assumptions of the physicists who developed the mathematical underpinnings of string theory, Jorge Almeida examines the misperceptions of people who attempt to predict lottery results, and Ian Stewart offers advice to authors who aspire to write successful math books for general readers. And there's much, much more. In addition to presenting the year's most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.




Competitions for Young Mathematicians


Book Description

This book gathers the best presentations from the Topic Study Group 30: Mathematics Competitions at ICME-13 in Hamburg, and some from related groups, focusing on the field of working with gifted students. Each of the chapters includes not only original ideas, but also original mathematical problems and their solutions. The book is a valuable resource for researchers in mathematics education, secondary and college mathematics teachers around the globe as well as their gifted students.