The Separable Galois Theory of Commutative Rings, Second Edition


Book Description

The Separable Galois Theory of Commutative Rings, Second Edition provides a complete and self-contained account of the Galois theory of commutative rings from the viewpoint of categorical classification theorems and using solely the techniques of commutative algebra. Along with updating nearly every result and explanation, this edition contains a new chapter on the theory of separable algebras. The book develops the notion of commutative separable algebra over a given commutative ring and explains how to construct an equivalent category of profinite spaces on which a profinite groupoid acts. It explores how the connection between the categories depends on the construction of a suitable separable closure of the given ring, which in turn depends on certain notions in profinite topology. The book also discusses how to handle rings with infinitely many idempotents using profinite topological spaces and other methods.




Set Theoretical Aspects of Real Analysis


Book Description

Set Theoretical Aspects of Real Analysis is built around a number of questions in real analysis and classical measure theory, which are of a set theoretic flavor. Accessible to graduate students, and researchers the beginning of the book presents introductory topics on real analysis and Lebesgue measure theory. These topics highlight the boundary b




Signal Processing


Book Description

Signal Processing: A Mathematical Approach is designed to show how many of the mathematical tools the reader knows can be used to understand and employ signal processing techniques in an applied environment. Assuming an advanced undergraduate- or graduate-level understanding of mathematics-including familiarity with Fourier series, matrices, probab




Special Integrals of Gradshteyn and Ryzhik


Book Description

A Guide to the Evaluation of IntegralsSpecial Integrals of Gradshetyn and Ryzhik: The Proofs provides self-contained proofs of a variety of entries in the frequently used table of integrals by I.S. Gradshteyn and I.M. Ryzhik. The book gives the most elementary arguments possible and uses Mathematica to verify the formulas. Readers discover the beau




Sinusoids


Book Description

A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medic




Global Lorentzian Geometry, Second Edition


Book Description

Bridging the gap between modern differential geometry and the mathematical physics of general relativity, this text, in its second edition, includes new and expanded material on topics such as the instability of both geodesic completeness and geodesic incompleteness for general space-times, geodesic connectibility, the generic condition, the sectional curvature function in a neighbourhood of degenerate two-plane, and proof of the Lorentzian Splitting Theorem.;Five or more copies may be ordered by college or university stores at a special student price, available on request.




Vector and Tensor Analysis, Second Edition


Book Description

Revised and updated throughout, this book presents the fundamental concepts of vector and tensor analysis with their corresponding physical and geometric applications - emphasizing the development of computational skills and basic procedures, and exploring highly complex and technical topics in simplified settings.;This text: incorporates transformation of rectangular cartesian coordinate systems and the invariance of the gradient, divergence and the curl into the discussion of tensors; combines the test for independence of path and the path independence sections; offers new examples and figures that demonstrate computational methods, as well as carify concepts; introduces subtitles in each section to highlight the appearance of new topics; provides definitions and theorems in boldface type for easy identification. It also contains numerical exercises of varying levels of difficulty and many problems solved.




Measure and Integral


Book Description

Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less




Strange Functions in Real Analysis, Second Edition


Book Description

This volume aims to explicate extraordinary functions in real analysis and their applications. It examines the Baire category method, the Zermelo-Fraenkel set, the Axiom of Dependent Choices, Cantor and Peano type functions, the Continuum Hypothesis, everywhere differentiable nowhere monotone functions, and Jarnik's nowhere approximately differentiable functions.




Modeling and Inverse Problems in the Presence of Uncertainty


Book Description

Modeling and Inverse Problems in the Presence of Uncertainty collects recent research—including the authors’ own substantial projects—on uncertainty propagation and quantification. It covers two sources of uncertainty: where uncertainty is present primarily due to measurement errors and where uncertainty is present due to the modeling formulation itself. After a useful review of relevant probability and statistical concepts, the book summarizes mathematical and statistical aspects of inverse problem methodology, including ordinary, weighted, and generalized least-squares formulations. It then discusses asymptotic theories, bootstrapping, and issues related to the evaluation of correctness of assumed form of statistical models. The authors go on to present methods for evaluating and comparing the validity of appropriateness of a collection of models for describing a given data set, including statistically based model selection and comparison techniques. They also explore recent results on the estimation of probability distributions when they are embedded in complex mathematical models and only aggregate (not individual) data are available. In addition, they briefly discuss the optimal design of experiments in support of inverse problems for given models. The book concludes with a focus on uncertainty in model formulation itself, covering the general relationship of differential equations driven by white noise and the ones driven by colored noise in terms of their resulting probability density functions. It also deals with questions related to the appropriateness of discrete versus continuum models in transitions from small to large numbers of individuals. With many examples throughout addressing problems in physics, biology, and other areas, this book is intended for applied mathematicians interested in deterministic and/or stochastic models and their interactions. It is also suitable for scientists in biology, medicine, engineering, and physics working on basic modeling and inverse problems, uncertainty in modeling, propagation of uncertainty, and statistical modeling.




Recent Books