Rayleigh-benard Convection: Structures And Dynamics


Book Description

This invaluable book presents a concise but systematic account of the formation of spatial flow structures in a horizontal fluid layer heated from below. Flows of this type, known as Rayleigh-Bénard convection, show important features of behaviour inherent not only in various hydrodynamic-instability phenomena but also in nonlinear pattern-forming processes in other contexts. The book describes the basic methods of investigating convection patterns, and the types of two- and three-dimensional flows, pattern defects, and sequences of convection-regime changes.The author pays special attention to the question of how various factors (mainly reducible to initial and boundary conditions) determine the shapes and sizes of the structures which develop. In this way, the role of order and disorder in flow patterns, as a factor strongly affecting the character of the evolution of structures, is revealed. The presentation emphasizes the physical picture of these phenomena, without excessive mathematical detail.




Magnetic Convection


Book Description

The manufacture of silicon single crystals is one of the most important processes in the information technology industry. This book explains the details of liquid metal convection, providing a guide for the elegant operation and control of Czochralski crystal growth, including the effect of magnetic control. Also covered is the newly emerging research field of the application of strong magnetic field using a superconducting magnet. Model equations for the phenomena in the magnetic field are treated in detail, which will be of much use to researchers and engineers in the field. The coverage includes the effect of the Lorentz force in materials processing and the magnetic force of recently developed superconducting magnets. It examines heat, mass and momentum transfer in electro-conducting and non-conducting fluids under normal and very strong magnetic fields. The book also treats the Czochralski single crystal growth process and continuous steel casting process as the most important current applications of magnetic fields. Numerical approaches are compared with the corresponding experimental measurements.







Magnetoconvection


Book Description

Leading experts present the current state of knowledge of the subject of magnetoconvection from the viewpoint of applied mathematics.




Thermal Characteristics and Convection in Nanofluids


Book Description

This book covers synthesis, characterization, stability, heat transfer and applications of nanofluids. It includes different types of nanofluids, their preparation methods as well as its effects on the stability and thermophysical properties of nanofluids. It provides a discussion on the mechanism behind the change in the thermal properties of nanofluids and heat transfer behaviour. It presents the latest information and discussion on the preparation and advanced characterization of nanofluids. It also consists of stability analysis of nanofluids and discussion on why it is essential for the industrial application. The book provides a discussion on thermal boundary layer properties in convection. Future directions for heat transfer applications to make the production and application of nanofluids at industrial level are also discussed.




Introduction to Engineering Heat Transfer


Book Description

Equips students with the essential knowledge, skills, and confidence to solve real-world heat transfer problems using EES, MATLAB, and FEHT.




The Structure of Turbulent Shear Flow


Book Description

Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.




Physics Of Buoyant Flows: From Instabilities To Turbulence


Book Description

Gravity pervades the whole universe; hence buoyancy drives fluids everywhere including those in the atmospheres and interiors of planets and stars. Prime examples of such flows are mantle convection, atmospheric flows, solar convection, dynamo process, heat exchangers, airships and hot air balloons. In this book we present fundamentals and applications of thermal convection and stratified flows.Buoyancy brings in extremely rich phenomena including waves and instabilities, patterns, chaos, and turbulence. In this book we present these topics in a systematic manner. First we present a unified treatment of linear theory that yields waves and thermal instability for stably and unstably-stratified flows respectively. We extend this analysis to include rotation and magnetic field. We also describe nonlinear saturation and pattern formation in Rayleigh-Bénard convection.The second half of the book is dedicated to buoyancy-driven turbulence, both in stably-stratified flow and in thermal convection. We describe the spectral theory including energy flux and show that the thermally-driven turbulence is similar to hydrodynamic turbulence. We also describe large-scale quantities like Reynolds and Nusselt numbers, flow anisotropy, and the dynamics of flow structures, namely flow reversals. Thus, this book presents all the major aspects of the buoyancy-driven flows in a coherent manner that would appeal to advanced graduate students and researchers.




Direct and Large-Eddy Simulation VIII


Book Description

This volume continues previous DLES proceedings books, presenting modern developments in turbulent flow research. It is comprehensive in its coverage of numerical and modeling techniques for fluid mechanics. After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003, Poitiers in 2005, and Trieste in 2009, the 8th workshop, DLES8, was held in Eindhoven, The Netherlands, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of this workshop is to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field was a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations.




Internally Heated Convection and Rayleigh-Bénard Convection


Book Description

This Brief describes six basic models of buoyancy-driven convection in a fluid layer: three configurations of internally heated convection and three configurations of Rayleigh-Bénard convection. The author discusses the main quantities that characterize heat transport in each model, along with the constraints on these quantities. This presentation is the first to place the various models in a unified framework, and similarities and differences between the cases are highlighted. Necessary and sufficient conditions for convective motion are given. For the internally heated cases only, parameter-dependent lower bounds on the mean fluid temperature are proven, and results of past simulations and laboratory experiments are summarized and reanalyzed. The author poses several open questions for future study.