Single-phase, Two-phase and Supercritical Natural Circulation Systems


Book Description

Single-Phase, Two-Phase and Supercritical Natural Circulation Systems provides readers with a deep understanding of natural circulation systems. This book equips the reader with an understanding on how to detect unstable loops to ensure plant safety and reliability, calculate heat transport capabilities, and design effective natural circulation loops, stability maps and parallel channel systems. Each chapter begins with an introduction to the circulation system before discussing each element in detail and analyzing its effect on the performance of the system. The book also presents thermosyphon heat transport devices in nuclear and other industrial plants, a common information need for students and researchers alike. This book is invaluable for engineers, designers, operators and consultants in nuclear, mechanical, electrical and chemical disciplines. - Presents single-phase, two-phase and supercritical natural circulation systems together in one resource to fill an existing knowledge gap - Guides the reader through relevant processes, such as designing, analyzing and generating stability maps and natural circulation loops, calculating heat transport capabilities, and maintaining natural circulation system operations - Includes global case studies and examples to increase understanding, along with important IAEA standards and procedures




Transient Behavior of a Natural-circulation Loop Operating Near the Thermodynamic Critical Point


Book Description

Interest in utilizing natural-circulation loops to obtain results that aid in the design of some boiler and nuclear reactor coolant systems has focused attention on the dynamic behavior of such loops. Much analytical and experimental work has been done so as to permit predictions of the transient behavior of both single-phase and two-phase natural-circulation systems. One region in which transient behavior has been noted experimentally, but which has not been investigated, is that region near the thermodynamic critical point of the fluid.




The Mathematical Understanding of Chemical Engineering Systems


Book Description

Mathematical Understanding of Chemical Engineering Systems is a collection of articles that covers the mathematical model involved in the practice of chemical engineering. The materials of the book are organized thematically into section. The text first covers the historical development of chemical engineering, and then proceeds to tackling a much more technical and specialized topics in the subsequent sections. The second section talks about the physical separation process, while the third section deals with stirred tank stability and control. Next, the book tackles polymerization and particle problems. Section 6 discusses empty tubular and fixed-bed catalytic reactors, while Section 7 details fluid-bed reactors and coal combustion. In the last two sections, the text presents mathematical and miscellaneous papers. The book will be most useful to researchers and practitioners of chemical engineering. Mathematicians and chemists will also benefit from the text.













A Theoretical Study of the Transient Operation and Stability of Two-phase Natural Circulation Loops


Book Description

Mathematical models of the time-dependent behavior of two-phase natural-circulation loops were used to predict the operation and to explain the unusual instability sometimes observed. The initial results obtained for a loop similar to the Univ. of Minnesota loop were used to formulate a more complex and accurate model, and the predicted transient behavior was in close agreement with the experimental results from the Minnesota loop. For a 300 psia, high-pressure loop, unstable oscillatory behavior was predicted under certain conditions and stable behavior under others. Closed unstable regions rather than limits were predicted, and the specifications of stability in terms of a single parameter were found to be impossible. The great difference in oscillatory frequencies observed at low and high pressures was found to be due largely to the system geometry. The criterion for the absence of oscillations was found to be similar to one of the criteria for stability of chemical reaction systems.




TID.


Book Description




Nanofluids and Their Engineering Applications


Book Description

Nanofluids are solid-liquid composite material consisting of solid nanoparticles suspended in liquid with enhanced thermal properties. This book introduces basic fluid mechanics, conduction and convection in fluids, along with nanomaterials for nanofluids, property characterization, and outline applications of nanofluids in solar technology, machining and other special applications. Recent experiments on nanofluids have indicated significant increase in thermal conductivity compared with liquids without nanoparticles or larger particles, strong temperature dependence of thermal conductivity, and significant increase in critical heat flux in boiling heat transfer, all of which are covered in the book. Key Features Exclusive title focusing on niche engineering applications of nanofluids Contains high technical content especially in the areas of magnetic nanofluids and dilute oxide based nanofluids Feature examples from research applications such as solar technology and heat pipes Addresses heat transfer and thermodynamic features such as efficiency and work with mathematical rigor Focused in content with precise technical definitions and treatment




Nuclear Safety


Book Description