Energy and Environment


Book Description

Studies the dynamic behavior of energy and environment systems to aid in energy and environmental policy planning for sustainable development. The author considers modelling of energy and environment with micro and macro level applications fro developing countries using both simulation and optimization techniques. He also presents a plan for integrated rural energy systems to promote sustainable development. Annotation copyrighted by Book News, Inc., Portland, OR










The National Energy Modeling System


Book Description

This book addresses the process and actions for developing enhanced capabilities to analyze energy policy issues and perform strategic planning activities at the U.S. Department of Energy (DOE) on an ongoing basis. Within the broader context of useful analytical and modeling capabilities within and outside the DOE, this volume examines the requirements that a National Energy Modeling System (NEMS) should fulfill, presents an overall architecture for a NEMS, identifies data needs, and outlines priority actions for timely implementation of the system.




Informing Energy and Climate Policies Using Energy Systems Models


Book Description

This book highlights how energy-system models are used to underpin and support energy and climate mitigation policy decisions at national, multi-country and global levels. It brings together, for the first time in one volume, a range of methodological approaches and case studies of good modeling practice on a national and international scale from the IEA-ETSAP energy technology initiative. It provides insights for the reader into the rich and varied applications of energy-system models and the underlying methodologies and policy questions they can address. The book demonstrates how these models are used to answer complex policy questions, including those relating to energy security, climate change mitigation and the optimal allocation of energy resources. It will appeal to energy engineers and technology specialists looking for a rationale for innovation in the field of energy technologies and insights into their evolving costs and benefits. Energy economists will gain an understanding of the key future role of energy technologies and policy makers will learn how energy-system modeling teams can provide unique perspectives on national energy and environment challenges. The book is carefully structured into three parts which focus on i) policy decisions that have been underpinned by energy-system models, ii) specific aspects of supply and end-use sector modeling, including technology learning and behavior and iii) how additional insights can be gained from linking energy-system models with other models. The chapters elucidate key methodological features backed up with concrete applications. The book demonstrates the high degree of flexibility of the modeling tools used to represent extremely different energy systems, from national to global levels.




Energy Policy Modeling in the 21st Century


Book Description

The roles and applications of various modeling approaches, aimed at improving the usefulness of energy policy models in public decision making, are covered by this book. The development, validation, and applications of system dynamics and agent-based models in service of energy policy design and assessment in the 21st century is a key focus. A number of modeling approaches and models for energy policy, with a particular focus on low-carbon economic development of regions and states are covered. Chapters on system dynamics methodology, model-based theory, fuzzy system dynamics frame-work, and optimization modeling approach are presented, along with several chapters on future research opportunities for the energy policy modeling community. The use of model-based analysis and scenarios in energy policy design and assessment has seen phenomenal growth during the past several decades. In recent years, renewed concerns about climate change and energy security have posed unique modeling challenges. By utilizing the validation techniques and procedures which are effectively demonstrated in these contributions, researchers and practitioners in energy systems domain can increase the appeal and acceptance of their policy models.




Microeconomic Modeling and Policy Analysis


Book Description

Microeconomic Modeling and Policy Analysis: Studies in Residential Energy Demand analyzes the aggregates and distributional impacts from alternative energy polices related to the energy demands of residential consumers. The book also analyzes the use of micro-simulation models in the study. The book examines three alternative energy policies and their possible impacts on the residential energy demand. The text describes models on energy use including general micro-simulation and micro-simulation as applied in ""Residential End-Use Energy Planning Systems"" (REEPS) and the Oak Ridge National Laboratory (ORNL) Residential Energy Consumption Model. The book describes REEPS as a model providing end-use specific forecasts of energy consumption at the household level. The text describes ORNL as a computationally simpler design but conceptually more complex one. The book then evaluates three different policy scenarios using each of these two models. The performance of REEPS and ORNL, as well as other dimensions of model projections, is examined. The implications regarding 1) policy analysis and 2) the use of micro simulation models are noted. The book then presents a table that summarizes the results of the comparative model evaluation. Energy policymakers, city and local government planning officials, development engineers, and environmentalists will find this book very relevant.







Energy Systems Modeling


Book Description

This book serves as an introductory reference guide for those studying the application of models in energy systems. The book opens with a taxonomy of energy models and treatment of descriptive and analytical models, providing the reader with a foundation of the basic principles underlying the energy models and positioning these principles in the context of energy system studies. In turn, the book provides valuable insights into the varied applications of different energy models to answer complex questions, including those concerning specific aspects of energy policy measures dealing with issues of supply and demand. Case studies are provided in all of the chapters, offering real-world examples of how existing models fit the classification methods outlined here. The book’s remaining chapters address a broad range of principles and applications, taking the reader from the basic principles involved, to state-of-the-art energy production and consumption processes, using modeling and validation/illustration in case studies to do so. With its in-depth mathematical foundation, this book serves as a comprehensive collection of work on modeling energy systems and processes, taking inexperienced graduate students from the basics through to a high-level understanding of the modeling processes in question, while also providing professionals and academic researchers in the field of energy planning with an up-to-date reference guide covering the latest works.




The Physics of Stocks and Flows of Energy Systems


Book Description

Using a system dynamics approach, this book illustrates the physics of fundamental accumulation processes (stocks and flows) across the demand and supply sectors of energy systems. Examples of system dynamics simulation models are presented where these accumulation processes are driving the behavior of the system. Based on these modeling efforts, two cases (the socio-economic and environmental implications of the energy policy of Pakistan and the dynamics of green power in Ontario, Canada) are analyzed and discussed. By studying the dynamics of the fundamental structures of an energy system, the reader gains an enhanced understanding of the stocks and flows of complex systems as well as their role in energy policy. This book is of use to managers and practitioners, teachers, researchers, and students of design and assessment of policy making for complex, dynamic energy systems.