Theoretical Chemistry and Physics of Heavy and Superheavy Elements


Book Description

Quantum mechanics provides the fundamental theoretical apparatus for describing the structure and properties of atoms and molecules in terms of the behaviour of their fundamental components, electrons and nudeL For heavy atoms and molecules containing them, the electrons can move at speeds which represent a substantial fraction of the speed of light, and thus relativity must be taken into account. Relativistic quantum mechanics therefore provides the basic formalism for calculating the properties of heavy-atom systems. The purpose of this book is to provide a detailed description of the application of relativistic quantum mechanics to the many-body prob lem in the theoretical chemistry and physics of heavy and superheavy elements. Recent years have witnessed a continued and growing interest in relativistic quantum chemical methods and the associated computa tional algorithms which facilitate their application. This interest is fu elled by the need to develop robust, yet efficient theoretical approaches, together with efficient algorithms, which can be applied to atoms in the lower part of the Periodic Table and, more particularly, molecules and molecular entities containing such atoms. Such relativistic theories and computational algorithms are an essential ingredient for the description of heavy element chemistry, becoming even more important in the case of superheavy elements. They are destined to become an indispensable tool in the quantum chemist's armoury. Indeed, since relativity influences the structure of every atom in the Periodic Table, relativistic molecular structure methods may replace in many applications the non-relativistic techniques widely used in contemporary research.




The Chemistry of Superheavy Elements


Book Description

This book is the first to treat the chemistry of superheavy elements, including important related nuclear aspects, as a self contained topic. It is written for those – students and novices -- who begin to work and those who are working in this fascinating and challenging field of the heaviest and superheavy elements, for their lecturers, their advisers and for the practicing scientists in the field – chemists and physicists - as the most complete source of reference about our today's knowledge of the chemistry of transactinides and superheavy elements. However, besides a number of very detailed discussions for the experts this book shall also provide interesting and easy to read material for teachers who are interested in this subject, for those chemists and physicists who are not experts in the field and for our interested fellow scientists in adjacent fields. Special emphasis is laid on an extensive coverage of the original literature in the reference part of each of the eight chapters to facilitate further and deeper studies of specific aspects. The index for each chapter should provide help to easily find a desired topic and to use this book as a convenient source to get fast access to a desired topic. Superheavy elements – chemical elements which are much heavier than those which we know of from our daily life – are a persistent dream in human minds and the kernel of science fiction literature for about a century.




Advanced Topics in Theoretical Chemical Physics


Book Description

Advanced Topics in Theoretical Chemical Physics is a collection of 20 selected papers from the scientific presentations of the Fourth Congress of the International Society for Theoretical Chemical Physics (ISTCP) held at Marly-le-Roi, France, in July 2002. Advanced Topics in Theoretical Chemical Physics encompasses a broad spectrum in which scientists place special emphasis on theoretical methods in chemistry and physics. The chapters in the book are divided into five sections: I: Advances Chemical Thermodynamics II: Electronic Structure of Molecular Systems III: Molecular Interaction and Dynamics IV: Condensed Matter V: Playing with Numbers This book is an invaluable resource for all academics and researchers interested in theoretical, quantum or statistical, chemical physics or physical chemistry. It presents a selection of some of the most advanced methods, results and insights in this exciting area.




The Chemistry of Superheavy Elements


Book Description

The second edition of "The Chemistry of the Superheavy Elements" provides a complete coverage of the chemistry of a series of elements beginning with atomic number 104 – the transactinides or superheavy elements – including their nuclear properties and production in nuclear reactions at heavy-ion accelerators. The contributors to this work include many renowned scientists who, during the last decades, have made vast contributions towards understanding the physics and chemistry of these elusive elements, both experimentally and theoretically. The main emphasis here is on demonstrating the fascinating studies involved in probing the architecture of the Periodic Table at its uppermost end, where relativistic effects drastically influence chemical properties. All known chemical properties of these elements are described together with the experimental techniques applied to study these short-lived man-made elements one atom-at-a-time. The status of theoretical chemistry and of empirical models is presented as well as aspects of nuclear physics. In addition, one chapter outlines the meanderings in this field from a historical perspective and the search for superheavy elements in Nature.




The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State


Book Description

This volume records the proceedings of a Forum on The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State held at the Coseners' House, Abingdon-on-Thames, Oxon. over the period 31st May - 2nd June, 2002. The forum consisted of 26 oral and poster presentations followed by a discussion structure around questions and comments submitted by the participants (and others who had expressed an interest) in advance of the meeting. Quantum mechanics provides a theoretical foundation for our under standing of the structure and properties of atoms, molecules and the solid state in terms their component particles, electrons and nuclei. (Rel ativistic quantum mechanics is required for molecular systems contain ing heavy atoms.) However, the solution of the equations of quantum mechanics yields a function, a wave function, which depends on the co ordinates, both space and spin, of all of the particles in the system. This functions contains much more information than is required to yield the energy or other property.




Chemical Elements


Book Description




Relativistic Electronic Structure Theory


Book Description

The field of relativistic electronic structure theory is generally not part of theoretical chemistry education, and is therefore not covered in most quantum chemistry textbooks. This is due to the fact that only in the last two decades have we learned about the importance of relativistic effects in the chemistry of heavy and superheavy elements. Developments in computer hardware together with sophisticated computer algorithms make it now possible to perform four-component relativistic calculations for larger molecules. Two-component and scalar all-electron relativistic schemes are also becoming part of standard ab-initio and density functional program packages for molecules and the solid state. The second volume of this two-part book series is therefore devoted to applications in this area of quantum chemistry and physics of atoms, molecules and the solid state. Part 1 was devoted to fundamental aspects of relativistic electronic structure theory whereas Part 2 covers more of the applications side. This volume opens with a section on the Chemistry of the Superheavy Elements and contains chapters dealing with Accurate Relativistic Fock-Space Calculations for Many-Electron Atoms, Accurate Relativistic Calculations Including QED, Parity-Violation Effects in Molecules, Accurate Determination of Electric Field Gradients for Heavy Atoms and Molecules, Two-Component Relativistic Effective Core Potential Calculations for Molecules, Relativistic Ab-Initio Model Potential Calculations for Molecules and Embedded Clusters, Relativistic Pseudopotential Calculations for Electronic Excited States, Relativistic Effects on NMR Chemical Shifts, Relativistic Density Functional Calculations on Small Molecules, Quantum Chemistry with the Douglas-Kroll-Hess Approach to Relativistic Density Functional Theory, and Relativistic Solid State Calculations.- Comprehensive publication which focuses on new developments in relativistic quantum electronic structure theory- Many leaders from the field of theoretical chemistry have contributed to the TCC series- Will no doubt become a standard text for scientists in this field.




Relativistic Quantum Theory of Atoms and Molecules


Book Description

This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.




Explicitly Correlated Wave Functions in Chemistry and Physics


Book Description

Explicitly Correlated Wave Functions in Chemistry and Physics is the first book devoted entirely to explicitly correlated wave functions and their theory and applications in chemistry and molecular and atomic physics. Explicitly correlated wave functions are functions that depend explicitly on interelectronic distance. The book covers a wide range of methods based on explicitly correlated functions written by leaders in the field, including Kutzelnigg, Jeziorski, Szalewicz, Klopper and Noga. The book begins with a chapter on the theory of electron correlation and then the following three chapters describe different types of functions that can be used to solve the electronic Schrödinger equation for atoms and molecules. The book goes on to discuss the effects that go beyond the Born-Oppenheimer approximation, theory of relativistic effects, solution of the Dirac-Colomb equation, and relativistic correction using ECG functions. The last part of the book reviews applications of EC functions to calculate atomic and molecular properties and to study positronic systems, resonance states of atoms and nuclear dynamics of the hydrogen molecular ion.




The Elements


Book Description