Probability and Mathematical Statistics


Book Description

Probability and Mathematical Statistics: An Introduction provides a well-balanced first introduction to probability theory and mathematical statistics. This book is organized into two sections encompassing nine chapters. The first part deals with the concept and elementary properties of probability space, and random variables and their probability distributions. This part also considers the principles of limit theorems, the distribution of random variables, and the so-called student's distribution. The second part explores pertinent topics in mathematical statistics, including the concept of sampling, estimation, and hypotheses testing. This book is intended primarily for undergraduate statistics students.




Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions


Book Description

Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.




Mathematical Theory of Probability and Statistics


Book Description

Mathematical Theory of Probability and Statistics focuses on the contributions and influence of Richard von Mises on the processes, methodologies, and approaches involved in the mathematical theory of probability and statistics. The publication first elaborates on fundamentals, general label space, and basic properties of distributions. Discussions focus on Gaussian distribution, Poisson distribution, mean value variance and other moments, non-countable label space, basic assumptions, operations, and distribution function. The text then ponders on examples of combined operations and summation of chance variables characteristic function. The book takes a look at the asymptotic distribution of the sum of chance variables and probability inference. Topics include inference from a finite number of observations, law of large numbers, asymptotic distributions, limit distribution of the sum of independent discrete random variables, probability of the sum of rare events, and probability density. The text also focuses on the introduction to the theory of statistical functions and multivariate statistics. The publication is a dependable source of information for researchers interested in the mathematical theory of probability and statistics







Probability and Mathematical Statistics


Book Description

This book develops the theory of probability and mathematical statistics with the goal of analyzing real-world data. Throughout the text, the R package is used to compute probabilities, check analytically computed answers, simulate probability distributions, illustrate answers with appropriate graphics, and help students develop intuition surrounding probability and statistics. Examples, demonstrations, and exercises in the R programming language serve to reinforce ideas and facilitate understanding and confidence. The book’s Chapter Highlights provide a summary of key concepts, while the examples utilizing R within the chapters are instructive and practical. Exercises that focus on real-world applications without sacrificing mathematical rigor are included, along with more than 200 figures that help clarify both concepts and applications. In addition, the book features two helpful appendices: annotated solutions to 700 exercises and a Review of Useful Math. Written for use in applied masters classes, Probability and Mathematical Statistics: Theory, Applications, and Practice in R is also suitable for advanced undergraduates and for self-study by applied mathematicians and statisticians and qualitatively inclined engineers and scientists.




An Introduction to Probability Theory and Mathematical Statistics


Book Description

Sets and classes; Calculus; Linear Algebra; Probability; Random variables and their probability distributions; Moments and generating functions; Random vectors; Some special distributions; Limit theorems; Sample moments and their distributions; The theory of point estimation; Neyman-pearson theory of testing of hypotheses; Some further results on hypotheses testing; Confidence estimation; The general linear hypothesis; nonparametric statistical inference; Sequential statistical inference.




Geometric Aspects of Probability Theory and Mathematical Statistics


Book Description

It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others.




Probability Theory with Applications


Book Description

This is a revised and expanded edition of a successful graduate and reference text. The book is designed for a standard graduate course on probability theory, including some important applications. The new edition offers a detailed treatment of the core area of probability, and both structural and limit results are presented in detail. Compared to the first edition, the material and presentation are better highlighted; each chapter is improved and updated.




Probability Theory, Random Processes and Mathematical Statistics


Book Description

The second part (Chapters 4-6) provides a foundation of stochastic analysis, gives information on basic models of random processes and tools to study them. Here a certain familiarity with elements of functional analysis is necessary. Important material is presented in the form of examples to keep readers involved. Audience: This is a concise textbook for a graduate level course, with carefully selected topics representing the most important areas of modern probability, random processes and statistics.




40 Puzzles and Problems in Probability and Mathematical Statistics


Book Description

This book is based on the view that cognitive skills are best acquired by solving challenging, non-standard probability problems. Many puzzles and problems presented here are either new within a problem solving context (although as topics in fundamental research they are long known) or are variations of classical problems which follow directly from elementary concepts. A small number of particularly instructive problems is taken from previous sources which in this case are generally given. This book will be a handy resource for professors looking for problems to assign, for undergraduate math students, and for a more general audience of amateur scientists.