Progress in International Research on Thermodynamic and Transport Properties


Book Description

Progress in International Research on Thermodynamic and Transport Properties covers the proceedings of the 1962 Second Symposium by the same title, held at Purdue University and the Thermophysical Properties Research Center. This symposium brings together theoretical and experimental research works on the thermodynamic and transport properties of gases, liquids, and solids. This text is organized into nine parts encompassing 68 chapters that cover topics from thixotropy to molecular orbital calculations. The first three parts review papers on theoretical, experimental, and computational studies of the various aspects of thermodynamic properties. These parts discuss the principles of phase equilibria, throttling, volume heat capacity, steam, volumetric behavior, enthalpy, and density. The subsequent part highlights the theoretical evaluations of transport properties, such as viscosity, diffusion, and conductivity, as well as the transport processes. These topics are followed by surveys of the theories in intermolecular forces and their applications. Other parts consider the measurement of thermal conductivity, viscosity, and radiation. The final parts examine the properties of ionized gases and non-Newtonian fluids. This book will prove useful to mechanical and chemical engineers.




Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures


Book Description

Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100° to 5000° K and 1-atm pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. Intermolecular force constants for this potential were obtained from experimental viscosity data or were estimated when data were not available. The same set of constants was used to calculate both viscosity and conductivity. An Eucken-type correction for exchange between internal and translational energies was made for thermal conductivities of polyatomic gases.







NASA Technical Report


Book Description










NBS Special Publication


Book Description