Thermal-Hydraulics of Water Cooled Nuclear Reactors


Book Description

Thermal Hydraulics of Water-Cooled Nuclear Reactors reviews flow and heat transfer phenomena in nuclear systems and examines the critical contribution of this analysis to nuclear technology development. With a strong focus on system thermal hydraulics (SYS TH), the book provides a detailed, yet approachable, presentation of current approaches to reactor thermal hydraulic analysis, also considering the importance of this discipline for the design and operation of safe and efficient water-cooled and moderated reactors. Part One presents the background to nuclear thermal hydraulics, starting with a historical perspective, defining key terms, and considering thermal hydraulics requirements in nuclear technology. Part Two addresses the principles of thermodynamics and relevant target phenomena in nuclear systems. Next, the book focuses on nuclear thermal hydraulics modeling, covering the key areas of heat transfer and pressure drops, then moving on to an introduction to SYS TH and computational fluid dynamics codes. The final part of the book reviews the application of thermal hydraulics in nuclear technology, with chapters on V&V and uncertainty in SYS TH codes, the BEPU approach, and applications to new reactor design, plant lifetime extension, and accident analysis. This book is a valuable resource for academics, graduate students, and professionals studying the thermal hydraulic analysis of nuclear power plants and using SYS TH to demonstrate their safety and acceptability. Contains a systematic and comprehensive review of current approaches to the thermal-hydraulic analysis of water-cooled and moderated nuclear reactors Clearly presents the relationship between system level (top-down analysis) and component level phenomenology (bottom-up analysis) Provides a strong focus on nuclear system thermal hydraulic (SYS TH) codes Presents detailed coverage of the applications of thermal-hydraulics to demonstrate the safety and acceptability of nuclear power plants




Thermal-Hydraulic Analysis of Nuclear Reactors


Book Description

This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.




Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors


Book Description

Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. Presents the latest information on one of the deliverables of the SESAME H2020 project Provides an overview on the design and history of liquid metal cooled fast reactors worldwide Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications




Nuclear Thermal Hydraulics


Book Description

This volume provides fundamentals of nuclear thermal–hydraulics for reactor design and safety assessment. It also describes the basis for assessing cooling performance of nuclear reactors under accidental conditions. The descriptions in this book are virtually self-contained, beyond the assumption that readers are familiar with the introductory levels of nuclear engineering. This book helps readers understand the processes for nuclear reactor plant design and the most important factors in nuclear thermal-hydraulics.




Nuclear Reactor Thermal Hydraulics


Book Description

Nuclear Thermal-Hydraulic Systems provides a comprehensive approach to nuclear reactor thermal-hydraulics, reflecting the latest technologies, reactor designs, and safety considerations. The text makes extensive use of color images, internet links, computer graphics, and other innovative techniques to explore nuclear power plant design and operation. Key fluid mechanics, heat transfer, and nuclear engineering concepts are carefully explained, and supported with worked examples, tables, and graphics. Intended for use in one or two semester courses, the text is suitable for both undergraduate and graduate students. A complete Solutions Manual is available for professors adopting the text.




The Thermal-hydraulics of a Boiling Water Nuclear Reactor


Book Description

This edition of the classic monograph gives a comprehensive overview of the thermal-hydraulic technology underlying the design, operation, and safety assessment of boiling water reactors. In addition, new material on pressure suppression containment technology is presented.




Modelling of Nuclear Reactor Multi-physics


Book Description

Modelling of Nuclear Reactor Multiphysics: From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics is an accessible guide to the advanced methods used to model nuclear reactor systems. The book addresses the frontier discipline of neutronic/thermal-hydraulic modelling of nuclear reactor cores, presenting the main techniques in a generic manner and for practical reactor calculations.The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics. The book presents the main algorithms used in such codes for neutronic and thermal-hydraulic modelling, providing the details of the underlying methods, together with their assumptions and limitations. Because of the rapidly expanding use of coupled calculations for performing safety analyses, the analysists should be equally knowledgeable in all fields (i.e. neutron transport, fluid dynamics, heat transfer).The first chapter introduces the book’s subject matter and explains how to use its digital resources and interactive features. The following chapter derives the governing equations for neutron transport, fluid transport, and heat transfer, so that readers not familiar with any of these fields can comprehend the book without difficulty. The book thereafter examines the peculiarities of nuclear reactor systems and provides an overview of the relevant modelling strategies. Computational methods for neutron transport, first at the cell and assembly levels, then at the core level, and for one-/two-phase flow transport and heat transfer are treated in depth in respective chapters. The coupling between neutron transport solvers and thermal-hydraulic solvers for coarse mesh macroscopic models is given particular attention in a dedicated chapter. The final chapter summarizes the main techniques presented in the book and their interrelation, then explores beyond state-of-the-art modelling techniques relying on more integrated approaches. Covers neutron transport, fluid dynamics, and heat transfer, and their interdependence, in one reference Analyses the emerging area of multi-physics and multi-scale reactor modelling Contains 71 short videos explaining the key concepts and 77 interactive quizzes allowing the readers to test their understanding




Nuclear Systems Volume II


Book Description

This book provides advanced coverage of a wide variety of thermal fluid systems and technologies in nuclear power plants, including discussions of the latest reactor designs and their thermal/fluid technologies. Beyond the thermal hydraulic design and analysis of the core of a nuclear reactor, the book covers other components of nuclear power plants, such as the pressurizer, containment, and the entire primary coolant system. Placing more emphasis on the appropriate models for small-scale resolution of the velocity and temperature fields through computational fluid mechanics, the book shows how this enhances the accuracy of predicted operating conditions in nuclear plants. It introduces considerations of the laws of scaling and uncertainty analysis, along with a wider coverage of the phenomena encountered during accidents. FEATURES Discusses fundamental ideas for various modeling approaches for the macro- and microscale flow conditions in reactors Covers specific design considerations, such as natural convection and core reliability Enables readers to better understand the importance of safety considerations in thermal engineering and analysis of modern nuclear plants Features end-of-chapter problems Includes a solutions manual for adopting instructors This book serves as a textbook for advanced undergraduate and graduate students taking courses in nuclear engineering and studying thermal/hydraulic systems in nuclear power plants.




Thermal-Hydraulic Analysis of Nuclear Reactors


Book Description

This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental definitions of units and dimensions, thermodynamic variables, and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues Reinforces fundamentals of fluid dynamics and heat transfer; thermal and hydraulic analysis of nuclear reactors, two-phase flow and boiling, compressible flow, stress analysis, and energy conversion methods Includes detailed appendices that cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions




Nuclear Systems


Book Description

This edition builds on earlier traditions in providing broad subject-area coverage, application of theory to practical aspects of commercial nuclear power, and use of instructional objectives. Like the first edition, it focuses on what distinguishes nuclear engineering from the other engineering disciplines. However, this edition includes reorganization and overall update of descriptions of reactor designs and fuel-cycle steps, and more emphasis on reactor safety, especially related to technical and management lessons learned from the TMI-2 and Chernobyl - 4 accidents.