Time-Domain Scattering


Book Description

The first thorough synthesis of methods for solving time-domain scattering problems, covering both theoretical and computational aspects.




Time-Domain Scattering


Book Description

The wave equation, a classical partial differential equation, has been studied and applied since the eighteenth century. Solving it in the presence of an obstacle, the scatterer, can be achieved using a variety of techniques and has a multitude of applications. This book explains clearly the fundamental ideas of time-domain scattering, including in-depth discussions of separation of variables and integral equations. The author covers both theoretical and computational aspects, and describes applications coming from acoustics (sound waves), elastodynamics (waves in solids), electromagnetics (Maxwell's equations) and hydrodynamics (water waves). The detailed bibliography of papers and books from the last 100 years cement the position of this work as an essential reference on the topic for applied mathematicians, physicists and engineers.




Inverse Problems in Quantum Scattering Theory


Book Description

The normal business of physicists may be schematically thought of as predic ting the motions of particles on the basis of known forces, or the propagation of radiation on the basis of a known constitution of matter. The inverse problem is to conclude what the forces or constitutions are on the basis of the observed motion. A large part of our sensory contact with the world around us depends on an intuitive solution of such an inverse problem: We infer the shape, size, and surface texture of external objects from their scattering and absorption of light as detected by our eyes. When we use scattering experiments to learn the size or shape of particles, or the forces they exert upon each other, the nature of the problem is similar, if more refined. The kinematics, the equations of motion, are usually assumed to be known. It is the forces that are sought, and how they vary from point to point. As with so many other physical ideas, the first one we know of to have touched upon the kind of inverse problem discussed in this book was Lord Rayleigh (1877). In the course of describing the vibrations of strings of variable density he briefly discusses the possibility of inferring the density distribution from the frequencies of vibration. This passage may be regarded as a precursor of the mathematical study of the inverse spectral problem some seventy years later.




Fast Numerical Methods for High Frequency Wave Scattering


Book Description

Computer simulation of wave propagation is an active research area as wave phenomena are prevalent in many applications. Examples include wireless communication, radar cross section, underwater acoustics, and seismology. For high frequency waves, this is a challenging multiscale problem, where the small scale is given by the wavelength while the large scale corresponds to the overall size of the computational domain. Research into wave equation modeling can be divided into two regimes: time domain and frequency domain. In each regime, there are two further popular research directions for the numerical simulation of the scattered wave. One relies on direct discretization of the wave equation as a hyperbolic partial differential equation in the full physical domain. The other direction aims at solving an equivalent integral equation on the surface of the scatterer. In this dissertation, we present three new techniques for the frequency domain, boundary integral equations.




Electromagnetic Modelling and Measurements for Analysis and Synthesis Problems


Book Description

In this volume is presented the proceedings of a NATO Advanced Study Institute (ASI) on the theme of Electromagnetic Modelling and Measurements for Analysis and Synthesis Problems. The ASI was held at 11 Ciocco, Castelvecchio Pascoli, Tuscany, Italy, August 10th - 21st, 1987. It has been my good fortune to act as co-director of two of Jozef's previous ASIs, and so I am well acquainted with the JKS format for ASIs. As participants will realise, I did not attend this ASI, and so I only have a partial appreciation of the programme. In particular it has not been possible to include transcripts of any panel discussions which may have taken place. Readers may recall that such transcripts have formed a most interesting and useful part of previous ASI proceedings edited by Jozef Skwirzynski, and helped to convey the spirit of the meetings. Unfortunately it has proved impossible to locate the tapes, despite the best efforts of Jozef's assistant, Barry Stuart. A further dificulty has arisen through the untimely death of Jozef's former deputy and colleague at GEC Research, Ed Pacello, who assisted Jozef with the organisation of the precursor of this ASI. The following is taken from original material relating to the aims of the Advanced Study Institute: "PURPOSE OF THE INSTITUTE This Institute is concerned with computer modelling and with experimental measurements as two complementary tools for both analysis and synthesis of electromagnetics (EM), infra-red (IR) and optical problems.




Seismic Signatures and Analysis of Reflection Data in Anisotropic Media


Book Description

Following the breakthrough in the last decade in identifying the key parameters for time and depth imaging in anisotropic media and developing practical methodologies for estimating them from seismic data, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media primarily focuses on the far reaching exploration benefits of anisotropic processing. This volume provides the first comprehensive description of reflection seismic signatures and processing methods in anisotropic media. It identifies the key parameters for time and depth imaging in transversely isotropic media and describes practical methodologies for estimating them from seismic data. Also, it contains a thorough discussion of the important issues of uniqueness and stability of seismic velocity analysis in the presence of anisotropy. The book contains a complete description of anisotropic imaging methods, from the theoretical background to algorithms to implementation issues. Numerous applications to synthetic and field data illustrate the improvements achieved by the anisotropic processing and the possibility of using the estimated anisotropic parameters in lithology discrimination. Focuses on the far reaching exploration benefits of anisotropic processing First comprehensive description of reflection seismic signatures and processing methods in anisotropic media




Parity-time Symmetry and Its Applications


Book Description

This book offers a comprehensive review of the state-of-the-art theoretical and experimental advances in linear and nonlinear parity-time-symmetric systems in various physical disciplines, and surveys the emerging applications of parity-time (PT) symmetry. PT symmetry originates from quantum mechanics, where if the Schrodinger operator satisfies the PT symmetry, then its spectrum can be all real. This concept was later introduced into optics, Bose-Einstein condensates, metamaterials, electric circuits, acoustics, mechanical systems and many other fields, where a judicious balancing of gain and loss constitutes a PT-symmetric system. Even though these systems are dissipative, they exhibit many signature properties of conservative systems, which make them mathematically and physically intriguing. Important PT-symmetry applications have also emerged. This book describes the latest advances of PT symmetry in a wide range of physical areas, with contributions from the leading experts. It is intended for researchers and graduate students to enter this research frontier, or use it as a reference book.




Time Domain Wave-splittings and Inverse Problems


Book Description

This is an introduction to recent developments in the application of wave-splitting methods to direct and inverse scattering of wave fields. Here wave-splitting refers to the decomposition of the total field into two components which propagate in opposite directions. Although the text emphasizes time domain methods, it includes some applications to frequency domain problems.




The Finite Element Method in Electromagnetics


Book Description

A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.