Time-domain Kelvin Probe Force Microscopy for Local Ultra-fast Decay Time Measurements


Book Description

"Atomic force microscopy (AFM) was developed in the mid 1980's to measure the topography of a sample with atomic resolution. Since the first reported atomic resolution images, AFM has constantly been developed further to gain more insights into structure and property at the nanometer scale. Its great advantage is the capability to spatially resolve the tip-sample interaction at a sub-nanometer scale. Extensive research and development was conducted over the past two decades to not only measure the structure of a sample but also to extract information about the local properties. Kelvin Probe Force Microscopy is an example of such a technique, enabling the measurement of the local contact potential between the AFM tip and the sample. In this thesis, AFM is used to spatially resolve the surface potential generated upon illumination of a sample with light.A new technique to accurately measure the change of the contact potential difference under pulsed illumination was developed and implemented. This new measurement technique was needed since we reached the limit of currently available methods. These did not allow the measurement of the surface photovoltage as a function of illumination wavelength or time. This new method allows a much more accurate determination of surface potential differences. Resolving the surface photovoltage on a nanometer length scale with AFM can be of great interest in particular if one can additionally gain information about the temporal response of the sample. To address this, we developed a method to study the decay of the surface photovoltage by non-contact AFM, which is only limited by the underlying physics process. The approach used to achieve fast time resolution measurements is discussed in a general context. We demonstrate that the well known fundamental sensitivity limits of force detection also govern the achievable time resolution. The time resolved methods developed in this thesis can be adapted to measure time resolved ion diffusion, thermal response and electronic pulse propagation. As a proof for the novel measurement method, the ultra-fast decay time of the photocarriers in low temperature grown GaAs of about 1 ps was measured by AFM. These experiments were implemented by combining a traditional optical pump-probe modulated excitation with localized readout by AFM, The spatial resolution is therefore given by the AFM setup and not the optical excitation." --




Nanocharacterization Techniques


Book Description

Nanocharacterization Techniques covers the main characterization techniques used in nanomaterials and nanostructures. The chapters focus on the fundamental aspects of characterization techniques and their distinctive approaches. Significant advances that have taken place over recent years in refining techniques are covered, and the mathematical foundations needed to use the techniques are also explained in detail. This book is an important reference for materials scientists and engineers looking for a through analysis of nanocharacterization techniques in order to establish which is best for their needs. Includes a detailed analysis of different nanocharacterization techniques, allowing readers to explore which one is best for their particular needs Provides examples of how each characterization technique has been used, giving readers a greater understanding of how each technique can be profitably used Covers the mathematical background needed to utilize each of these techniques to their best effect, meaning that readers can gain a full understanding of the theoretical principles behind each technique covered Serves as an important, go-to reference for materials scientists and engineers




Kelvin Probe Force Microscopy


Book Description

This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics. In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors’ previous volume “Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces,” presents new and complementary topics. It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.




Visualizing Chemistry


Book Description

Scientists and engineers have long relied on the power of imaging techniques to help see objects invisible to the naked eye, and thus, to advance scientific knowledge. These experts are constantly pushing the limits of technology in pursuit of chemical imagingâ€"the ability to visualize molecular structures and chemical composition in time and space as actual events unfoldâ€"from the smallest dimension of a biological system to the widest expanse of a distant galaxy. Chemical imaging has a variety of applications for almost every facet of our daily lives, ranging from medical diagnosis and treatment to the study and design of material properties in new products. In addition to highlighting advances in chemical imaging that could have the greatest impact on critical problems in science and technology, Visualizing Chemistry reviews the current state of chemical imaging technology, identifies promising future developments and their applications, and suggests a research and educational agenda to enable breakthrough improvements.




Scanning Force Microscopy of Polymers


Book Description

Scope of the Book Synthetic and natural polymers exhibit a complex structural and morphological hierarchy on multiple length scales [1], which determines their performance. Thus, research aiming at visualizing structure and morphology using a multitude of microscopy techniques has received considerable attention since the early days of polymer science and technology. Various well-developed techniques such as optical microscopy and different forms of electron microscopy (Scanning Electron Micr- copy, SEM; Transmission Electron Microscopy, TEM; Environmental Scanning Electron Microscopy, ESEM) allow one to view polymeric structure at different levels of magni?cation. These classical techniques, and their applications to po- mers, are well documented in the literature [2, 3]. The invention of Scanning Tunneling Microscopy (STM) inspired the devel- ment of Atomic Force Microscopy (AFM) and other forms of scanning proximity microscopes in the late 1980s [4, 5]. AFM, unlike STM, can be used to image n- conducting specimens such as polymers. In addition, AFM imaging is feasible in liquids, which has several advantages. Using liquid imaging cells the forces between specimen and AFM probe are drastically reduced, thus sample damage is prevented. In addition, the use of water as imaging medium opened up new applications aiming at imaging, characterizing, and analyzing biologically important systems.




Chemical Abstracts


Book Description




Roadmap of Scanning Probe Microscopy


Book Description

Scanning tunneling microscopy has achieved remarkable progress and become the key technology for surface science. This book predicts the future development for all of scanning probe microscopy (SPM). Such forecasts may help to determine the course ultimately taken and may accelerate research and development on nanotechnology and nanoscience, as well as all in SPM-related fields in the future.




Semiconductor Material and Device Characterization


Book Description

This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.




Atomic-force Microscopy and Its Applications


Book Description

Atomic force microscopy is a surface analytical technique used in air, liquids or a vacuum to generate very high-resolution topographic images of a surface, down to atomic resolution. This book is not only for students but also for professional engineers who are working in the industry as well as specialists. This book aims to provide the reader with a comprehensive overview of the new trends, research results and development of atomic force microscopy. The chapters for this book have been written by respected and well-known researchers and specialists from different countries. We hope that after studying this book, you will have objective knowledge about the possible uses of atomic force microscopy in many scientific aspects of our civilisation.




Kelvin Probe Force Microscopy


Book Description

Over the nearly 20 years of Kelvin probe force microscopy, an increasing interest in the technique and its applications has developed. This book gives a concise introduction into the method and describes various experimental techniques. Surface potential studies on semiconductor materials, nanostructures and devices are described, as well as application to molecular and organic materials. The current state of surface potential at the atomic scale is also considered. This book presents an excellent introduction for the newcomer to this field, as much as a valuable resource for the expert.