Tin Oxide Materials


Book Description

Tin Oxide Materials: Synthesis, Properties, and Applications discusses the latest in metal oxides, an emerging area in electronic materials. As more is learned about this important materials system, more functionalities and applications have been revealed. This key reference on the topic covers important material that is ideal for materials scientists, materials engineers and materials chemists who have been introduced to metal oxides as a general category of materials, but want to take the next step and learn more about a specific material. Provides a complete resource on tin oxide materials systems, including in-depth discussions of properties, their synthesis, modelling methods, and applications Presents information on the well-investigated SnO2, but also includes discussions on its emerging stoichiometries, such as SnO and Sn3O4 Includes the most relevant applications in varistors, sensing devices, fuel cells, transistors, biological studies, and much more




Tin Oxide Materials


Book Description

Tin Oxide Materials: Synthesis, Properties, and Applications discusses the latest in metal oxides, an emerging area in electronic materials. As more is learned about this important materials system, more functionalities and applications have been revealed. This key reference on the topic covers important material that is ideal for materials scientists, materials engineers and materials chemists who have been introduced to metal oxides as a general category of materials, but want to take the next step and learn more about a specific material.







Nanostructured Anodic Metal Oxides


Book Description

Nanostructured Anodic Metal Oxides: Synthesis and Applications reviews the current status of fabrication strategies that have been successfully developed to generate nanoporous, nanotubular and nanofibrous anodic oxides on a range of metals. The most recent achievements and innovative strategies for the synthesis of nanoporous aluminum oxide and nanotubular titanium oxide are discussed. However, a special emphasis is placed on the possibility of fabrication of nanostructured oxide layers with different morphologies on other metals, including aluminum titanium, tantalum, tin, zinc, zirconium and copper. In addition, emerging biomedical applications of synthesized materials are discussed in detail. During the past decade, great progress has been made both in the preparation and characterization of various nanomaterials and their functional applications. The anodization of metals has proven to be reliable for the synthesis of nanoporous, nanotubular and nanofibrous metal oxides to produce a desired diameter, density, aspect ratio (length to diameter) of pores/tubes, and internal pore/tube structure. Provides an in-depth overview of anodization techniques for a range of metals Explores the emerging applications of anodic metal oxides Explains mechanisms of formation valve metal oxides via anodization




Transparent Conductive Materials


Book Description

Edited by well-known pioneers in the field, this handbook and ready reference provides a comprehensive overview of transparent conductive materials with a strong application focus. Following an introduction to the materials and recent developments, subsequent chapters discuss the synthesis and characterization as well as the deposition techniques that are commonly used for energy harvesting and light emitting applications. Finally, the book concludes with a look at future technological advances. All-encompassing and up-to-date, this interdisciplinary text runs the gamut from chemistry and materials science to engineering, from academia to industry, and from fundamental challenges to readily available applications.




Transition Metal Oxide Thin Film based Chromogenics and Devices


Book Description

Transition Metal Oxide Thin Film based Chromogenics and Devices discusses the recent experimental and theoretical developments in the field of chromogenics based on the transitional metal oxide (TMO) thin films. Understanding the relationship between the switching properties of TMO materials and their nanostructure is of paramount importance in developing efficient chromogenic devices. The tailoring of these switching behaviors is afforded detailed coverage in this book alongside in-depth discussion of a range of chromogenic materials and devices, including photochromics, thermochromics, and electrochromics. The book covers both the theoretical aspects of TMO thin film based chromogenics and their engineering applications in device construction. Academics and professionals in the field of materials science and optics will find this book to be a key resource, whether their focus is low-dimension materials, light-materials interaction, or device development. Enables researchers to keep up with recent developments in thin film based chromogenics Provides detailed coverage of the switching mechanism of the various transitional metal oxide thin films to assist readers in developing more efficient devices Offers in-depth discussion of a range of chromogenic materials and devices, including thermochromics, photochromics and electrochromics







Synthesis and Characterisation of Oxide Materials


Book Description

This study helps to new researchers to learn about oxide semiconducting materials and its some properties, the doping of these two materials gave Indium tin oxide materials which has plenty of optoelectronic applications.Indium tin oxide (In2O3: Sn) is an n-type semiconducting material with wide band gap. With oxygen deficiency they become conducting whereas in stoichiometric condition insulators. The resistance variation when exposed to gaseous atmosphere plays crucial role in gas sensing applications of these materials. Gas sensing materials should have large surface area so that contacting area between the grains and gaseous molecules will be increased manifold, which will enhance the sensitivity and selectivity of sensors. In2O3, SnO2 and In2O3: Sn have been used in powder, thick film and thin film form as gas sensing material out of which powder based sensing elements provide a single step way of making low cost sensors. For these purpose powders of these semiconductor oxides are to be prepared with nano grains having large specific surface are




Metal Oxide Nanoparticles, 2 Volume Set


Book Description

Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.