Stem Cells and Biomaterials for Regenerative Medicine


Book Description

Stem Cells and Biomaterials for Regenerative Medicine addresses the urgent need for a compact source of information on both the cellular and biomaterial aspects of regenerative medicine. By developing a mutual understanding between three separately functioning areas of science—medicine, the latest technology, and clinical economics—the volume encourages interdisciplinary relationships that will lead to solutions for the significant challenges faced by today's regenerative medicine. Users will find sections on the homeostatic balance created by apoptosis and proliferating tissue stem cells, the naturally regenerative capacities of various tissue types, the potential regenerative benefits of iPS-generation, various differentiation protocols, and more. Written in easily accessbile language, this volume is appropriate for any professional or medical staff looking to expand their knowledge with regard to stem cells and regenerative medicine. - Arms readers with key information on tissue engineering, artificial organs and biomaterials, while using broadly accessible language - Provides broad introduction to, and examples of, various types of stem cells, core concepts of regenerative medicine, biomaterials, nanotechnology and nanomaterials, somatic cell transdyferentiation, and more - Edited and authored by researchers with expertise in regenerative medicine, (cancer) stem cells, biomaterials, genetics and nanomaterials




In Situ Tissue Regeneration


Book Description

In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body's ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body's own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications. - Explores the body's ability to mobilize endogenous stem cells to the site of injury - Details the latest strategies developed for inducing and supporting the body's own regenerating capacity - Presents smart biomaterials in cell-based tissue engineering applications—from the cell level to applications—in the first unified volume - Features chapter authors and editors who are authorities in this emerging field - Prioritizes a discussion of the future direction of smart biomaterials for in situ tissue regeneration, which will affect an emerging and lucrative industry




Bone Tissue Engineering


Book Description

Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t




Principles of Tissue Engineering


Book Description

The opportunity that tissue engineering provides for medicine is extraordinary. In the United States alone, over half-a-trillion dollars are spent each year to care for patients who suffer from tissue loss or dysfunction. Although numerous books and reviews have been written on tissue engineering, none has been as comprehensive in its defining of the field. Principles of Tissue Engineering combines in one volume the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation of applications of tissue engineering to diseases affecting specific organ systems. The first edition of the book, published in 1997, is the definite reference in the field. Since that time, however, the discipline has grown tremendously, and few experts would have been able to predict the explosion in our knowledge of gene expression, cell growth and differentiation, the variety of stem cells, new polymers and materials that are now available, or even the successful introduction of the first tissue-engineered products into the marketplace. There was a need for a new edition, and this need has been met with a product that defines and captures the sense of excitement, understanding and anticipation that has followed from the evolution of this fascinating and important field.Key Features* Provides vast, detailed analysis of research on all of the major systems of the human body, e.g., skin, muscle, cardiovascular, hematopoietic, and nerves* Essential to anyone working in the field* Educates and directs both the novice and advanced researcher* Provides vast, detailed analysis of research with all of the major systems of the human body, e.g. skin, muscle, cardiovascular, hematopoietic, and nerves* Has new chapters written by leaders in the latest areas of research, such as fetal tissue engineering and the universal cell* Considered the definitive reference in the field* List of contributors reads like a "who's who" of tissue engineering, and includes Robert Langer, Joseph Vacanti, Charles Vacanti, Robert Nerem, A. Hari Reddi, Gail Naughton, George Whitesides, Doug Lauffenburger, and Eugene Bell, among others







Smart Biomaterials


Book Description

This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.




Tissue Engineering for Artificial Organs, 2 Volume Set


Book Description

A comprehensive overview of the latest achievements, trends, and the current state of the art of this important and rapidly expanding field. Clearly and logically structured, the first part of the book explores the fundamentals of tissue engineering, providing a separate chapter on each of the basic topics, including biomaterials stem cells, biosensors and bioreactors. The second part then follows a more applied approach, discussing various applications of tissue engineering, such as the replacement or repairing of skins, cartilages, livers and blood vessels, to trachea, lungs and cardiac tissues, to musculoskeletal tissue engineering used for bones and ligaments as well as pancreas, kidney and neural tissue engineering for the brain. The book concludes with a look at future technological advances. An invaluable reading for entrants to the field in biomedical engineering as well as expert researchers and developers in industry.




Injectable Biomaterials


Book Description

Novel injectable materials for non-invasive surgical procedures are becoming increasingly popular. An advantage of these materials include easy deliverability into the body, however the suitability of their mechanical properties must also be carefully considered. Injectable biomaterials covers the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology.Part one focuses on materials and properties, with chapters covering the design of injectable biomaterials as well as their rheological properties and the mechanical properties of injectable polymers and composites. Part two covers the clinical applications of injectable biomaterials, including chapters on drug delivery, tissue engineering and orthopaedic applications as well as injectable materials for gene delivery systems. In part three, existing and developing technologies are discussed. Chapters in this part cover such topics as environmentally responsive biomaterials, injectable nanotechnology, injectable biodegradable materials and biocompatibility. There are also chapters focusing on troubleshooting and potential future applications of injectable biomaterials.With its distinguished editor and international team of contributors, Injectable biomaterials is a standard reference for materials scientists and researchers working in the biomaterials industry, as well as those with an academic interest in the subject. It will also be beneficial to clinicians. - Comprehensively examines the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology - Reviews the design of injectable biomaterials as well as their rheological properties and the mechanical properties of injectable polymers and composites - Explores clinical applications of injectable biomaterials, including drug delivery, tissue engineering, orthopaedic applications and injectable materials for gene delivery systems




Biomaterials from Nature for Advanced Devices and Therapies


Book Description

In-depth information on natural biomaterials and their applications for translational medicine! Undiluted expertise: edited by world-leading experts with contributions from top-notch international scientists, collating experience and cutting-edge knowledge on natural biomaterials from all over the world A must-have on the shelf in every biomaterials lab: graduate and PhD students beginning their career in biomaterials science and experienced researchers and practitioners alike will turn to this comprehensive reference in their daily work Link to clinical practice: chapters on translational research make readers aware of what needs to be considered when a biomaterial leaves the lab to be routinely used




Biomaterials in Regenerative Medicine and the Immune System


Book Description

The generation of tridimensional tissues, assembled from scaffolding materials populated with biologically functional cells, is the great challenge and hope of tissue bioengineering and regenerative medicine. The generation of biomaterials capable of harnessing the immune system has been particularly successful. This book provides a comprehensive view of how immune cells can be manipulated to suppresses inflammation, deliver vaccines, fight cancer cells, promote tissue regeneration or inhibit blood clotting and bacterial infections by functionally engineered biomaterials. However, long-lived polymers, such as those employed in orthopedic surgery or vascular stents, can often induce an immune reaction to their basic components. As a result, this book is also an important step towards coming to understand how to manipulate biomaterials to optimize their beneficial effects and downplay detrimental immune responses.