Book Description
Presents a modern treatment of the theory of theta functions in the context of algebraic geometry.
Author : Alexander Polishchuk
Publisher : Cambridge University Press
Page : 308 pages
File Size : 12,78 MB
Release : 2003-04-21
Category : Mathematics
ISBN : 0521808049
Presents a modern treatment of the theory of theta functions in the context of algebraic geometry.
Author : Herbert Lange
Publisher : Springer Science & Business Media
Page : 443 pages
File Size : 12,46 MB
Release : 2013-03-09
Category : Mathematics
ISBN : 3662027887
Abelian varieties are special examples of projective varieties. As such theycan be described by a set of homogeneous polynomial equations. The theory ofabelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern language. It is intended to give a comprehensive introduction to the field, but also to serve as a reference. The focal topics are the projective embeddings of an abelian variety, their equations and geometric properties. Moreover several moduli spaces of abelian varieties with additional structure are constructed. Some special results onJacobians and Prym varieties allow applications to the theory of algebraic curves. The main tools for the proofs are the theta group of a line bundle, introduced by Mumford, and the characteristics, to be associated to any nondegenerate line bundle. They are a direct generalization of the classical notion of characteristics of theta functions.
Author : Gerd Faltings
Publisher : Springer Science & Business Media
Page : 328 pages
File Size : 12,85 MB
Release : 2013-04-17
Category : Mathematics
ISBN : 3662026325
A new and complete treatment of semi-abelian degenerations of abelian varieties, and their application to the construction of arithmetic compactifications of Siegel moduli space, with most of the results being published for the first time. Highlights of the book include a classification of semi-abelian schemes, construction of the toroidal and the minimal compactification over the integers, heights for abelian varieties over number fields, and Eichler integrals in several variables, together with a new approach to Siegel modular forms. A valuable source of reference for researchers and graduate students interested in algebraic geometry, Shimura varieties or diophantine geometry.
Author : David Ellwood
Publisher : American Mathematical Soc.
Page : 190 pages
File Size : 48,98 MB
Release : 2011
Category : Mathematics
ISBN : 0821852051
This collection of cutting-edge articles on vector bundles and related topics originated from a CMI workshop, held in October 2006, that brought together a community indebted to the pioneering work of P. E. Newstead, visiting the United States for the first time since the 1960s. Moduli spaces of vector bundles were then in their infancy, but are now, as demonstrated by this volume, a powerful tool in symplectic geometry, number theory, mathematical physics, and algebraic geometry. In fact, the impetus for this volume was to offer a sample of the vital convergence of techniques and fundamental progress, taking place in moduli spaces at the outset of the twenty-first century. This volume contains contributions by J. E. Andersen and N. L. Gammelgaard (Hitchin's projectively flat connection and Toeplitz operators), M. Aprodu and G. Farkas (moduli spaces), D. Arcara and A. Bertram (stability in higher dimension), L. Jeffrey (intersection cohomology), J. Kamnitzer (Langlands program), M. Lieblich (arithmetic aspects), P. E. Newstead (coherent systems), G. Pareschi and M. Popa (linear series on Abelian varieties), and M. Teixidor i Bigas (bundles over reducible curves). These articles do require a working knowledge of algebraic geometry, symplectic geometry and functional analysis, but should appeal to practitioners in a diversity of fields. No specialization should be necessary to appreciate the contributions, or possibly to be stimulated to work in the various directions opened by these path-blazing ideas; to mention a few, the Langlands program, stability criteria for vector bundles over surfaces and threefolds, linear series over abelian varieties and Brauer groups in relation to arithmetic properties of moduli spaces.
Author : Charles Herbert Clemens
Publisher : Cambridge University Press
Page : 180 pages
File Size : 20,28 MB
Release : 1995
Category : Mathematics
ISBN : 9780521562447
The 1992/93 academic year at the Mathematical Sciences Research Institute was devoted to complex algebraic geometry. This volume collects survey articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change. The editors of the volume, Herbert Clemens and János Kollár, chaired the organizing committee. This book gives a good idea of the intellectual content of the special year and of the workshops. Its articles represent very well the change of direction and branching out witnessed by algebraic geometry in the last few years.
Author : Allan Adler
Publisher : Springer
Page : 205 pages
File Size : 29,87 MB
Release : 2006-11-14
Category : Mathematics
ISBN : 3540496092
This is a book aimed at researchers and advanced graduate students in algebraic geometry, interested in learning about a promising direction of research in algebraic geometry. It begins with a generalization of parts of Mumford's theory of the equations defining abelian varieties and moduli spaces. It shows through striking examples how one can use these apparently intractable systems of equations to obtain satisfying insights into the geometry and arithmetic of these varieties. It also introduces the reader to some aspects of the research of the first author into representation theory and invariant theory and their applications to these geometrical questions.
Author : Christina Birkenhake
Publisher : Springer Science & Business Media
Page : 635 pages
File Size : 11,16 MB
Release : 2013-03-14
Category : Mathematics
ISBN : 3662063077
This book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ". . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.
Author : M. Nagata
Publisher : Elsevier
Page : 223 pages
File Size : 31,26 MB
Release : 1983-01-01
Category : Mathematics
ISBN : 0444535810
Recent Progress of Algebraic Geometry in Japan
Author : Ulrich Görtz
Publisher : Springer Nature
Page : 877 pages
File Size : 31,72 MB
Release : 2023-11-22
Category : Mathematics
ISBN : 3658430311
This book completes the comprehensive introduction to modern algebraic geometry which was started with the introductory volume Algebraic Geometry I: Schemes. It begins by discussing in detail the notions of smooth, unramified and étale morphisms including the étale fundamental group. The main part is dedicated to the cohomology of quasi-coherent sheaves. The treatment is based on the formalism of derived categories which allows an efficient and conceptual treatment of the theory, which is of crucial importance in all areas of algebraic geometry. After the foundations are set up, several more advanced topics are studied, such as numerical intersection theory, an abstract version of the Theorem of Grothendieck-Riemann-Roch, the Theorem on Formal Functions, Grothendieck's algebraization results and a very general version of Grothendieck duality. The book concludes with chapters on curves and on abelian schemes, which serve to develop the basics of the theory of these two important classes of schemes on an advanced level, and at the same time to illustrate the power of the techniques introduced previously. The text contains many exercises that allow the reader to check their comprehension of the text, present further examples or give an outlook on further results.
Author : Thomas Bloom
Publisher : Princeton University Press
Page : 361 pages
File Size : 30,23 MB
Release : 2016-03-02
Category : Mathematics
ISBN : 1400882575
The fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field. The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. Mok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.