Stein Manifolds and Holomorphic Mappings


Book Description

The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. The book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applications ranging from classical to contemporary.




Hyperbolic Manifolds and Holomorphic Mappings


Book Description

The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections ?invariant metrics and pseudo-distances? and ?hyperbolic complex manifolds? within the section ?holomorphic mappings?. The invariant distance introduced in the first edition is now called the ?Kobayashi distance?, and the hyperbolicity in the sense of this book is called the ?Kobayashi hyperbolicity? to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.







The Topology of Spaces of J-holomorphic Maps to CP2


Book Description

In [Seg79], Graeme Segal proved that the space of holomorphic maps from a Riemann surface to a complex projective space is homology equivalent to the corresponding continuous mapping space through a range of dimensions increasing with degree. I will address if a similar result holds when other almost complex structures are put on projective space. For any compatible almost complex structure J on CP^2, I prove that the inclusion map from the space of J-holomorphic maps to the space of continuous maps induces a homology surjection through a range of dimensions tending to infinity with degree. The proof involves comparing the scanning map of topological chiral homology ([Sal01], [Lur09], [And10]) with gluing of J-holomorphic curves ([MS94], [Sik03]).




Introduction to Holomorphy


Book Description

This book presents a set of basic properties of holomorphic mappings between complex normed spaces and between complex locally convex spaces. These properties have already achieved an almost definitive form and should be known to all those interested in the study of infinite dimensional Holomorphy and its applications.The author also makes ``incursions'' into the study of the topological properties of the spaces of holomorphic mappings between spaces of infinite dimension. An attempt is then made to show some of the several topologies that can naturally be considered in these spaces.Infinite dimensional Holomorphy appears as a theory rich in fascinating problems and rich in applications to other branches of Mathematics and Mathematical Physics.







Numerical Range of Holomorphic Mappings and Applications


Book Description

This book describes recent developments as well as some classical results regarding holomorphic mappings. The book starts with a brief survey of the theory of semigroups of linear operators including the Hille-Yosida and the Lumer-Phillips theorems. The numerical range and the spectrum of closed densely defined linear operators are then discussed in more detail and an overview of ergodic theory is presented. The analytic extension of semigroups of linear operators is also discussed. The recent study of the numerical range of composition operators on the unit disk is mentioned. Then, the basic notions and facts in infinite dimensional holomorphy and hyperbolic geometry in Banach and Hilbert spaces are presented, L. A. Harris' theory of the numerical range of holomorphic mappings is generalized, and the main properties of the so-called quasi-dissipative mappings and their growth estimates are studied. In addition, geometric and quantitative analytic aspects of fixed point theory are discussed. A special chapter is devoted to applications of the numerical range to diverse geometric and analytic problems.