Using Heavy Ion Backscattering Spectrometry (HIBS) to Solve Integrated Circuit Manufacturing Problems


Book Description

Heavy Ion Backscattering Spectrometry (HIBS) is a new IBA tool for measuring extremely low levels of surface contamination on very pure substrates, such as Si wafers used in the manufacture of integrated circuits. HIBS derives its high sensitivity through the use of moderately low energy ((approximately) 100 keV) heavy ions (e.g., C12) to boost the RBS cross-section to levels approaching 1,000 barns, and by using specially designed time-of-flight detectors which have been optimized to provide a large scattering solid angle with minimal kinematic broadening. A HIBS User Facility has been created which provides US industry, national laboratories, and universities with a place for conducting ultra-trace level surface contamination studies. A review of the HIBS technique is given and examples of using the facility to calibrate Total-Reflection X-ray Fluorescence Spectroscopy (TXRF) instruments and develop wafer cleaning processes are discussed.




Microcontamination Detection Using Heavy Ion Backscattering Spectrometry


Book Description

Heavy Ion Backscattering Spectrometry (HIBS) is a new ion beam analysis tool using heavy, low-energy ions in backscattering mode which can detect very low levels of surface contamination. By taking advantage of the greatly increased scattering cross-section for such ion beams and eliminating unwanted substrate scattering with a thin carbon foil, our research system has achieved a sensitivity ranging from (approximately)5 x 101° atoms/cm2 for Fe to (approximately)1 x 109 atoms/cm2 for Au on Si, without preconcentration. A stand-alone HIBS prototype now under construction in collaboration with SEMATECH is expected to achieve detection limits of (approximately)5 x 109 atoms/cm2 for Fe and (approximately)1 x 108 atoms/cm2 for Au on Si, again without preconcentration. Since HIBS is standardless and has no matrix effects, it will be useful not only as a standalone tool, but also for benchmarking standards for other tools. This conference is testimony to the importance of controlling contamination in microelectronics manufacturing. By the turn of the century, very large scale integrated circuit processing is expected to require contamination levels well below 1 x 109 atoms/cm2 in both starting materials and introduced by processing. One of the most sensitive of existing general-purpose tools is Total reflection X-Ray Fluorescence (TXRF), which can detect (approximately)1 x 101° atoms/cm2 levels of some elements such as Fe and Cu, but for many elements it is limited to 1 x 1012 atoms/cm2 or worse. TXRF can achieve a sensitivity of 108 atoms/cm2 through the use of synchrotron radiation or via pre-concentration using Vapor Phase Decomposition. HIBS provides an ion beam analysis capability with the potential for providing similar sensitivity at medium Z and higher sensitivity at larger Z, all without pre-concentration or matrix effects.




Beam-Solid Interactions for Materials Synthesis and Characterization: Volume 354


Book Description

Proceedings of the title symposium, held at the 1994 MRS Fall Meeting in Boston, 28 November-2 December 1994. Selected papers that were presented in both oral and poster sessions are divided into six topical groups: ion beam processing; defects and diffusion; ion-beam modification of polymers; analysis and characterization; sputtering; and laser-assisted and induced processes. Annotation copyright by Book News, Inc., Portland, OR










The Local Chemical Analysis of Materials


Book Description

* Expert, up-to-date guidance on the appropriate techniques of local chemical analysis * Comprehensive. This volume is an ideal starting point for material research and development, bringing together a number of techniques usually only found in isolation * Recent examples of the applications of techniques are provided in all cases Helping to solve the problems of materials scientists in academia and industry, this book offers guidance on appropriate techniques of chemical analysis of materials at the local level, down to the atomic scale. Comparisons are made between various techniques in terms of the nature of the probe employed. The detection limit and the optimum spatial resolution is also considered, as well as the range of atomic number that may be identified and the precision and methods of calibration, where appropriate. The Local Chemical Analysis of Materials is amply illustrated allowing the reader to easily see typical results. It includes a comparative table of techniques to aid selection for analysis and a table of acronyms, particularly valuable in this jargon-riddled area.




INIS Atomindex


Book Description




Atomic and Nuclear Analytical Methods


Book Description

This book compares and offers a comprehensive overview of nine analytical techniques important in material science and many other branches of science. All these methods are already well adapted to applications in diverse fields such as medical, environmental studies, archaeology, and materials science. This clearly presented reference describes and compares the principles of the methods and the various source and detector types.




Measurement of Trace Environmental Contaminants Using Cavity Ringdown Spectroscopy


Book Description

Environmental contamination has become a significant threat to the health and well-being of mankind as well as to the environment, prompting the establishment and implementation of stringent environmental regulations. The ability to accurately detect and quantify contaminants, such as mercury (Hg), uranium (U), and volatile organic compounds (VOCs), in real-time, in situ is of significant importance to monitoring and remediation efforts. In an effort to develop a real-time, fast-response detector that is portable, highly sensitive, and cost efficient, this research explored the feasibility of utilizing cavity ringdown spectroscopy (CRDS) in conjunction with various plasma sources and vacuum cavities to accurately detect trace quantities of contaminants. The feasibility of detecting Hg with a low power, low temperature candle-shaped microwave-induced plasma (MIP) and a copper surfatron microwave cavity with various plasma discharge tube configurations in conjunction with cavity ringdown spectroscopy (MIP-CRDS) is discussed. Detection limits were on the order of 221 ppt Hg in the vapor phase for the candle-shaped MIP and improved by a factor of 10 with the tube-shaped plasma. The ability to detect elemental Hg naturally-evaporating from contaminated soils and solutions was evaluated, and 10's of ppt were consistently obtained. Additionally, the fine structure of the Hg 253.65 nm transition was observed with each iteration of this approach. The potential of effectively generating uranium atoms and ions with a low-power, low-flow rate microwave-induced plasma was evaluated. Uranium emission spectra covering 320 - 430 nm were obtained, labeled, and compared to the available literature values. Calibration curves were generated, and the detection limits were determined to be ~0.4 ppm. The feasibility of measuring U incorporating diode laser-plasma-CRDS was explored. The preliminary studies clearly show the ability to detect U vapor with this technique and sub-ppm detection limits were obtained. A continuous wave cavity ringdown spectroscopy system (CW-CRDS) incorporating commercially available telecommunications diode lasers was constructed, and the overall sensitivity of this system was evaluated by utilizing the absorption of the asymmetric C-H stretch overtones of several VOCs, including benzene, chlorobenzene, 1,2-dichlorobenzene, toluene, and acetone. Detection limits are determined to be in the ppb's for each of the organics examined.