Single-phase, Two-phase and Supercritical Natural Circulation Systems


Book Description

Single-Phase, Two-Phase and Supercritical Natural Circulation Systems provides readers with a deep understanding of natural circulation systems. This book equips the reader with an understanding on how to detect unstable loops to ensure plant safety and reliability, calculate heat transport capabilities, and design effective natural circulation loops, stability maps and parallel channel systems. Each chapter begins with an introduction to the circulation system before discussing each element in detail and analyzing its effect on the performance of the system. The book also presents thermosyphon heat transport devices in nuclear and other industrial plants, a common information need for students and researchers alike. This book is invaluable for engineers, designers, operators and consultants in nuclear, mechanical, electrical and chemical disciplines. - Presents single-phase, two-phase and supercritical natural circulation systems together in one resource to fill an existing knowledge gap - Guides the reader through relevant processes, such as designing, analyzing and generating stability maps and natural circulation loops, calculating heat transport capabilities, and maintaining natural circulation system operations - Includes global case studies and examples to increase understanding, along with important IAEA standards and procedures




Thermo-fluid Dynamics of Two-Phase Flow


Book Description

This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.







High Performance Light Water Reactor


Book Description

Results of the project "High Performance Light Water Reactor--Phase 2," carried out September 2006-February 2010 as part of the 6th European Framework Program.










Heat Transfer and Fluid Flow


Book Description

A total of 2519 annotated references to the unclassified report literature is presented. Subjects covered under heat transfer and fluid flow include radioinduced heating; boiling; boiler, evaporators, pump, and heat exchanger design; hydrodynamics; coolants and their properties; thermal and flow instrumentation; high temperature materials; thermal properties of materials; and thermal insulation. Subjects covered less completely include thermodynamics; aerodynamics; high temperature corrosion; corrosion specific to heat transfer systems; erosion; mass transfer; corrosion film formation and effects; coolant processing and radioactivity; radiation effects of heat transfer materials; and pertinent data of thermonuclear processes. Subject, report number availability, and author indexes are given.




Dynamics and Control of Energy Systems


Book Description

This book presents recent advances in dynamics and control of different types of energy systems. It covers research on dynamics and control in energy systems from different aspects, namely, combustion, multiphase flow, nuclear, chemical and thermal. The chapters start from the basic concepts so that this book can be useful even for researchers with very little background in the area. A dedicated chapter provides an overview on the fundamental aspects of the dynamical systems approach. The book will be of use to researchers and professionals alike.




Fluid Mechanics and Fluid Power (Vol. 3)


Book Description

This book presents the select proceedings of the 48th National Conference on Fluid Mechanics and Fluid Power (FMFP 2021) held at BITS Pilani in December 2021. It covers the topics such as fluid mechanics, measurement techniques in fluid flows, computational fluid dynamics, instability, transition and turbulence, fluid‐structure interaction, multiphase flows, micro- and nanoscale transport, bio-fluid mechanics, aerodynamics, turbomachinery, propulsion and power. The book will be useful for researchers and professionals interested in the broad field of mechanics.




TID.


Book Description