Internally Heated Convection and Rayleigh-Bénard Convection


Book Description

This Brief describes six basic models of buoyancy-driven convection in a fluid layer: three configurations of internally heated convection and three configurations of Rayleigh-Bénard convection. The author discusses the main quantities that characterize heat transport in each model, along with the constraints on these quantities. This presentation is the first to place the various models in a unified framework, and similarities and differences between the cases are highlighted. Necessary and sufficient conditions for convective motion are given. For the internally heated cases only, parameter-dependent lower bounds on the mean fluid temperature are proven, and results of past simulations and laboratory experiments are summarized and reanalyzed. The author poses several open questions for future study.




Boundary Layer Flows


Book Description

This book provides a comprehensive overview of boundary layer flows, including laminar and turbulent flows. Chapters discuss such topics as the nature of transition, the effect of two-dimensional and isolated roughness on laminar flow, and progress in the design of low-drag airfoils. They also present theoretical and experimental results in boundary layer flows and discuss directions for future research.







Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics


Book Description

Instabilities of fluid flows and the associated transitions between different possible flow states provide a fascinating set of problems that have attracted researchers for over a hundred years. This book addresses state-of-the-art developments in numerical techniques for computational modelling of fluid instabilities and related bifurcation structures, as well as providing comprehensive reviews of recently solved challenging problems in the field.




Turbulence, Coherent Structures, Dynamical Systems and Symmetry


Book Description

Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.




Magnetoconvection


Book Description

Leading experts present the current state of knowledge of the subject of magnetoconvection from the viewpoint of applied mathematics.




Introduction to Engineering Heat Transfer


Book Description

Equips students with the essential knowledge, skills, and confidence to solve real-world heat transfer problems using EES, MATLAB, and FEHT.




Transport Phenomena in Porous Media II


Book Description

Transport phenomena in porous media continues to be a field which attracts intensive research activity. This is primarily due to the fact that it plays an important and practical role in a large variety of diverse scientific applications. Transport Phenomena in Porous Media II covers a wide range of the engineering and technological applications, including both stable and unstable flows, heat and mass transfer, porosity, and turbulence.Transport Phenomena in Porous Media II is the second volume in a series emphasising the fundamentals and applications of research in porous media. It contains 16 interrelated chapters of controversial, and in some cases conflicting, research, over a wide range of topics. The first volume of this series, published in 1998, met with a very favourable reception. Transport Phenomena in Porous Media II maintains the original concept including a wide and diverse range of topics, whilst providing an up-to-date summary of recent research in the field by its leading practitioners.




Spectral Methods in MATLAB


Book Description

Mathematics of Computing -- Numerical Analysis.




Magnetic Convection


Book Description

The manufacture of silicon single crystals is one of the most important processes in the information technology industry. This book explains the details of liquid metal convection, providing a guide for the elegant operation and control of Czochralski crystal growth, including the effect of magnetic control. Also covered is the newly emerging research field of the application of strong magnetic field using a superconducting magnet. Model equations for the phenomena in the magnetic field are treated in detail, which will be of much use to researchers and engineers in the field. The coverage includes the effect of the Lorentz force in materials processing and the magnetic force of recently developed superconducting magnets. It examines heat, mass and momentum transfer in electro-conducting and non-conducting fluids under normal and very strong magnetic fields. The book also treats the Czochralski single crystal growth process and continuous steel casting process as the most important current applications of magnetic fields. Numerical approaches are compared with the corresponding experimental measurements.