Truth, Objects, Infinity


Book Description

This volume features essays about and by Paul Benacerraf, whose ideas have circulated in the philosophical community since the early nineteen sixties, shaping key areas in the philosophy of mathematics, the philosophy of language, the philosophy of logic, and epistemology. The book started as a workshop held in Paris at the Collège de France in May 2012 with the participation of Paul Benacerraf. The introduction addresses the methodological point of the legitimate use of so-called “Princess Margaret Premises” in drawing philosophical conclusions from Gödel’s first incompleteness theorem. The book is then divided into three sections. The first is devoted to an assessment of the improved version of the original dilemma of “Mathematical Truth” due to Hartry Field: the challenge to the platonist is now to explain the reliability of our mathematical beliefs given the very subject matter of mathematics, either pure or applied. The second addresses the issue of the ontological status of numbers: Frege’s logicism, fictionalism, structuralism, and Bourbaki’s theory of structures are called up for an appraisal of Benacerraf’s negative conclusions of “What Numbers Could Not Be.” The third is devoted to supertasks and bears witness to the unique standing of Benacerraf’s first publication: “Tasks, Super-Tasks, and Modern Eleatics” in debates on Zeno’s paradox and associated paradoxes, infinitary mathematics, and constructivism and finitism in the philosophy of mathematics. Two yet unpublished essays by Benacerraf have been included in the volume: an early version of “Mathematical Truth” from 1968 and an essay on “What Numbers Could Not Be” from the mid 1970’s. A complete chronological bibliography of Benacerraf’s work to 2016 is provided.Essays by Jody Azzouni, Paul Benacerraf, Justin Clarke-Doane, Sébastien Gandon, Brice Halimi, Jon Pérez Laraudogoitia, Mary Leng, Antonio León-Sánchez and Ana C. León-Mejía, Marco Panza, Fabrice Pataut, Philippe de Rouilhan, Andrea Sereni, and Stewart Shapiro.




Truth, Objects, Infinity


Book Description

This volume features essays about and by Paul Benacerraf, whose ideas have circulated in the philosophical community since the early nineteen sixties, shaping key areas in the philosophy of mathematics, the philosophy of language, the philosophy of logic, and epistemology. The book started as a workshop held in Paris at the Collège de France in May 2012 with the participation of Paul Benacerraf. The introduction addresses the methodological point of the legitimate use of so-called “Princess Margaret Premises” in drawing philosophical conclusions from Gödel’s first incompleteness theorem. The book is then divided into three sections. The first is devoted to an assessment of the improved version of the original dilemma of “Mathematical Truth” due to Hartry Field: the challenge to the platonist is now to explain the reliability of our mathematical beliefs given the very subject matter of mathematics, either pure or applied. The second addresses the issue of the ontological status of numbers: Frege’s logicism, fictionalism, structuralism, and Bourbaki’s theory of structures are called up for an appraisal of Benacerraf’s negative conclusions of “What Numbers Could Not Be.” The third is devoted to supertasks and bears witness to the unique standing of Benacerraf’s first publication: “Tasks, Super-Tasks, and Modern Eleatics” in debates on Zeno’s paradox and associated paradoxes, infinitary mathematics, and constructivism and finitism in the philosophy of mathematics. Two yet unpublished essays by Benacerraf have been included in the volume: an early version of “Mathematical Truth” from 1968 and an essay on “What Numbers Could Not Be” from the mid 1970’s. A complete chronological bibliography of Benacerraf’s work to 2016 is provided.Essays by Jody Azzouni, Paul Benacerraf, Justin Clarke-Doane, Sébastien Gandon, Brice Halimi, Jon Pérez Laraudogoitia, Mary Leng, Antonio León-Sánchez and Ana C. León-Mejía, Marco Panza, Fabrice Pataut, Philippe de Rouilhan, Andrea Sereni, and Stewart Shapiro.




The Beginning of Infinity


Book Description

'Science has never had an advocate quite like David Deutsch ... A computational physicist on a par with his touchstones Alan Turing and Richard Feynman, and a philosopher in the line of his greatest hero, Karl Popper. His arguments are so clear that to read him is to experience the thrill of the highest level of discourse available on this planet and to understand it' Peter Forbes, Independent In our search for truth, how far have we advanced? This uniquely human quest for good explanations has driven amazing improvements in everything from scientific understanding and technology to politics, moral values and human welfare. But will progress end, either in catastrophe or completion - or will it continue infinitely? In this profound and seminal book, David Deutsch explores the furthest reaches of our current understanding, taking in the Infinity Hotel, supernovae and the nature of optimism, to instill in all of us a wonder at what we have achieved - and the fact that this is only the beginning of humanity's infinite possibility. 'This is Deutsch at his most ambitious, seeking to understand the implications of our scientific explanations of the world ... I enthusiastically recommend this rich, wide-ranging and elegantly written exposition of the unique insights of one of our most original intellectuals' Michael Berry, Times Higher Education Supplement 'Bold ... profound ... provocative and persuasive' Economist 'David Deutsch may well go down in history as one of the great scientists of our age' Scotsman




Naming Infinity


Book Description

In 1913, Russian imperial marines stormed an Orthodox monastery at Mt. Athos, Greece, to haul off monks engaged in a dangerously heretical practice known as Name Worshipping. Exiled to remote Russian outposts, the monks and their mystical movement went underground. Ultimately, they came across Russian intellectuals who embraced Name Worshipping—and who would achieve one of the biggest mathematical breakthroughs of the twentieth century, going beyond recent French achievements. Loren Graham and Jean-Michel Kantor take us on an exciting mathematical mystery tour as they unravel a bizarre tale of political struggles, psychological crises, sexual complexities, and ethical dilemmas. At the core of this book is the contest between French and Russian mathematicians who sought new answers to one of the oldest puzzles in math: the nature of infinity. The French school chased rationalist solutions. The Russian mathematicians, notably Dmitri Egorov and Nikolai Luzin—who founded the famous Moscow School of Mathematics—were inspired by mystical insights attained during Name Worshipping. Their religious practice appears to have opened to them visions into the infinite—and led to the founding of descriptive set theory. The men and women of the leading French and Russian mathematical schools are central characters in this absorbing tale that could not be told until now. Naming Infinity is a poignant human interest story that raises provocative questions about science and religion, intuition and creativity.




Roads to Infinity


Book Description

Winner of a CHOICE Outstanding Academic Title Award for 2011!This book offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. The treatment is h




Infinity and the Mind


Book Description

The book contains popular expositions (accessible to readers with no more than a high school mathematics background) on the mathematical theory of infinity, and a number of related topics. These include G?del's incompleteness theorems and their relationship to concepts of artificial intelligence and the human mind, as well as the conceivability of some unconventional cosmological models. The material is approached from a variety of viewpoints, some more conventionally mathematical and others being nearly mystical. There is a brief account of the author's personal contact with Kurt G?del.An appendix contains one of the few popular expositions on set theory research on what are known as "strong axioms of infinity."




Abstraction and Infinity


Book Description

Mancosu offers an original investigation of key notions in mathematics: abstraction and infinity, and their interaction. He gives a historical analysis of the theorizing of definitions by abstraction, and explores a novel approach to measuring the size of infinite sets, showing how this leads to deep mathematical and philosophical problems.




Levinas's Existential Analytic


Book Description

By virtue of the originality and depth of its thought, Emmanuel Levinas’s masterpiece, Totality and Infinity: An Essay on Exteriority, is destined to endure as one of the great works of philosophy. It is an essential text for understanding Levinas’s discussion of “the Other,” yet it is known as a “difficult” book. Modeled after Norman Kemp Smith’s commentary on Kant’s Critique of Pure Reason, Levinas’s Existential Analytic guides both new and experienced readers through Levinas’s text. James R. Mensch explicates Levinas’s arguments and shows their historical referents, particularly with regard to Heidegger, Husserl, and Derrida. Students using this book alongside Totality and Infinity will be able to follow its arguments and grasp the subtle phenomenological analyses that fill it.




Philosophical Perspectives on Infinity


Book Description

This book is an exploration of philosophical questions about infinity. Graham Oppy examines how the infinite lurks everywhere, both in science and in our ordinary thoughts about the world. He also analyses the many puzzles and paradoxes that follow in the train of the infinite. Even simple notions, such as counting, adding and maximising present serious difficulties. Other topics examined include the nature of space and time, infinities in physical science, infinities in theories of probability and decision, the nature of part/whole relations, mathematical theories of the infinite, and infinite regression and principles of sufficient reason.




Secrets of Infinity


Book Description

Secrets of Infinity examines infinity as it has been studied since antiquity, beginning with the classical figures from Greece and Rome. In an entertaining and practical way, readers will discover that infinity is not limited to the mathematical concept as represented by the symbol nor its metaphysical concept as the indefinable concept of eternity, but in fact, it resides in a variety of disciplines, a multitude of contexts and has a far-reaching influence on human existence. Secrets of Infinity organizes the 150 articles into six subject areas: Science: Henrietta Lacks -- Her death in 1951 from uterine cancer at the age 31 did not end her existence. Her doctor took a tissue sample from the tumor and developed the first continuous culture of human cells and thus the first immortal cell line in history, known as HeLa. Mathematics: Googol -- Edward Kasner (1878-1955) devised the googol to show how huge infinity is through a number so large that it is unimaginable but still not even close to infinity. Technology: TA-65 -- Recently, researchers at Sierra Sciences discovered the TA-65, which could be the chromosomal catalyst to stopping, slowing or even reversing the aging process, bringing us closer to the myth of eternal youth. Art: The Endless Stairs of the Vatican -- Little did the Vatican Museums know in 1932, when the stairs were built, that this formation could represent life itself, with the discovery of the DNA double helix chain in 1953. Philosophy: René Descartes, the Infinite and God -- According to Descartes, the idea of infinity has been imposed by a nature that is higher than human, and can only come from this nature being infinite, so he interprets that the existence of infinity confirms the existence of God. Symbology: The Labyrinth -- A labyrinth is a route made up of streets and crossroads with an ingenious and complex structure whose design variations are endless, especially in the case of the rhizome labyrinth, which has infinite ramifications. Engaging and free of jargon, Secrets of Infinity helps to demystify the elusive infinity and bring it closer to modern concepts and understanding. Thinking readers and students will find enjoyment and insight on its pages.