Tunable Solid State Lasers for Remote Sensing


Book Description

The Workshop on Tunable Solid State Lasers for Remote Sensing was held at Stanford University in October 1984 to assess the state of the art in tunable solid state lasers for remote sensing from satellite platforms. The value of conducting global remote sensing measurements of atmospheric chemistry, climate, and weather in the 1990s is now established. What is not yet defined, however, is the status of the developing tunable laser technology that must meet both the scientific requirements and the space platform constraints. This workshop was convened by the Office of Aeronautics and Space Technology (OAST) of the National Aeronautics and Space Administration (NASA) to assess the status and progress in tunable solid state laser sources for remote sensing. The workshop was organized to facilitate information exchange across a number of technologies from remote sensing requirements to crystal growth of the materials important for the development of the tunable laser sources. The emphasis was on the recent developments in tunable solid state laser sources necessary to meet the future transmitter requirements for global remote sensing. A goal of the workshop was to form recommendations to NASA on the current and future prospects for solid state laser technology that will allow remote sensing measurements from air, shuttle, and free-flying satellite platforms. The emphasis was on solid state laser sources because they offer the best potential for meeting the demanding requirements of compact size, good efficiency, and long operational lifetimes required for future space station and free-flying platform operation.




Tunable Solid State Lasers


Book Description

In recent years there has been renewed interest in the scientific and indu strial communities in tunable solid state vibronic lasers. Much of this has been spurred by the user desirous of obtaining compact primary laser sources (independent of nonlinear optical frequency shifts) throughout the visible and near infra-red spectral regi ons. To further motivate and stimul ate re search and development in this area, workshops sponsored by the Laser Divi sion of the US ArmY Night Vision Electro-Optics Laboratory (NVEOL) at Fort Belvoir, Virginia were held during 1-3 April 1981 and 16-17 June 1983 at Keystone and NVEOL, respectively. The consensus of opinion of the partici pants at these workshops was that any successful program leading to the iden tification and development of vibronic tunable laser materials in the visible and IR must include coordinated activity between crystal growers, theoreti cal and experimental investigators into the fundamental processes of vibro nic lasing, and laser device engineers. Continued interaction between govern ment, industry, and academia was encouraged in order to establish a unified approach to these areas and, when necessary, redefine and redirect program matic activity. The organization of this 1st Annual Conference on Tunable Solid State La sers held at the La Jolla Institute 13-15 June 1984, was based around the latest results in tunable vibronic materials and laser development, but structured ina manner consi stent wi th the recommendati ons of the NVEOL workshops.




Solid-State Mid-Infrared Laser Sources


Book Description

The book describes the most advanced techniques for generating coherent light in the mid-infrared region of the spectrum. These techniques represent diverse areas of photonics and include heterojunction semiconductor lasers, quantum cascade lasers, tunable crystalline lasers, fiber lasers, Raman lasers, and optical parametric laser sources. Offering authoritative reviews by internationally recognized experts, the book provides a wealth of information on the essential principles and methods of the generation of coherent mid-infrared light and on some of its applications. The instructive nature of the book makes it an excellent text for physicists and practicing engineers who want to use mid-infrared laser sources in spectroscopy, medicine, remote sensing and other fields, and for researchers in various disciplines requiring a broad introduction to the subject.




Solid-State Lasers and Applications


Book Description

Because of the favorable characteristics of solid-state lasers, they have become the preferred candidates for a wide range of applications in science and technology, including spectroscopy, atmospheric monitoring, micromachining, and precision metrology. Presenting the most recent developments in the field, Solid-State Lasers and Applications focuses on the design and applications of solid-state laser systems. With contributions from leading international experts, the book explores the latest research results and applications of solid-state lasers as well as various laser systems. The beginning chapters discuss current developments and applications of new solid-state gain media in different wavelength regions, including cerium-doped lasers in the ultraviolet range, ytterbium lasers near 1μm, rare-earth ion-doped lasers in the eye-safe region, and tunable Cr2+:ZnSe lasers in the mid-infrared range. The remaining chapters study specific modes of operation of solid-state laser systems, such as pulsed microchip lasers, high-power neodymium lasers, ultrafast solid-state lasers, amplification of femtosecond pulses with optical parametric amplifiers, and noise characteristics of solid-state lasers. Solid-State Lasers and Applications covers the most important aspects of the field to provide current, comprehensive coverage of solid-state lasers.




Solid-State Laser Engineering


Book Description

This book has once again been updated to keep pace with recent developments and to maintain Koechner's position as "the bible" of the field. Written from an industrial perspective, it provides a detailed discussion of, and data for, solid-state lasers, their characteristics, design and construction.







Advances in Atmospheric Remote Sensing with Lidar


Book Description

Lidar or laser radar, the depth-resolved remote measurement of atmospheric parameters with optical means, has become an important tool in the field of atmospheric and environmental remote sensing. In this volume the latest progress in the development of Lidar methods, experiments, and applications is described. The content is based on selected and thoroughly refereed papers presented at the 18th International Laser Radar Conference, Berlin, 22 - 26 July 1996. The book is divided into six parts which cover the topics of tropospheric aerosols and clouds, Lidar in space, wind, water vapor, troposheric trace gases and plumes, and stratospheric and mesospheric profiling. As a supplement to fundamental LIDAR textbooks this volume may serve as a guide through the blossoming field of modern Lidar techniques.




Solid-State Lasers


Book Description

Koechner's well-known ‘bible’ on solid-state laser engineering is now available in an accessible format at the graduate level. Numerous exercises with hints for solution, new text and updated material where needed make this text very accessible.




Monthly Catalog of United States Government Publications


Book Description

February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index