Two Phase Flows in Chemical Engineering


Book Description

The behaviour of bubbles is a unifying theme of this book. From an explanation of the fundamentals of bubbles formation at a single orifice, Dr Azbel goes on to set up equations for bubble motion, bubble size, bubble-size distribution and pressure drop across a perforated plate.




Modelling and Experimentation in Two-Phase Flow


Book Description

This is an up-to-date review of recent advances in the study of two-phase flows, with focus on gas-liquid flows, liquid-liquid flows, and particle transport in turbulent flows. The book is divided into several chapters, which after introducing basic concepts lead the reader through a more complex treatment of the subjects. The reader will find an extensive review of both the older and the more recent literature, with abundance of formulas, correlations, graphs and tables. A comprehensive (though non exhaustive) list of bibliographic references is provided at the end of each chapter. The volume is especially indicated for researchers who would like to carry out experimental, theoretical or computational work on two-phase flows, as well as for professionals who wish to learn more about this topic.




Annular Two-Phase Flow


Book Description

Annular Two-Phase Flow presents the wide range of industrial applications of annular two-phase flow regimes. This book discusses the fluid dynamics and heat transfer aspects of the flow pattern. Organized into 12 chapters, this book begins with an overview of the classification of the various types of interface distribution observed in practice. This text then examines the various regimes of two-phase flow with emphasis on the regions of occurrence of the annular flow regime. Other chapters consider the single momentum and energy balances, which illustrate the differences and analogies between single- and two-phase flows. This book discusses as well the simple modes for annular flow with consideration to the calculation of the profile of shear stress in the liquid film. The final chapter deals with the techniques that are developed for the measurement of flow pattern, entrainment, and film thickness. This book is a valuable resource for chemical engineers.




Single and Two-Phase Flows on Chemical and Biomedical Engineering


Book Description

Single and two-phase flows are ubiquitous in most natural process and engineering systems. Examples of systems or process include, packed bed reactors, either single phase or multiphase, absorber and adsorber separation columns, filter beds, plate heat exchangers, flow of viscoelastic fluids in polymer systems, or the enhanced recovery of oil, among others. In each case the flow plays a central role in determining the system or process behavior and performance. A better understanding of the underlying physical phenomena and the ability to describe the phenomena properly are both crucial to improving design, operation and control processes involving the flow of fluids, ensuring that they will be more efficient and cost effective. Expanding disciplines such as microfluidics and the simulation of complex flow physical systems, such as blood flow in physiological networks, also rely heavily on accurate predictions of fluid flow. Recent advances either in computational and experimental techniques are improving the existing knowledge of single and multiphase flows in engineering and physical systems of interest. This ebook is a review on the state-of-the-art and recent advances in critical areas of fluid mechanics and transport phenomena with respect to chemical and biomedical engineering applications.




Two-Phase Flow, Boiling, and Condensation


Book Description

This text is an introduction to gas-liquid two-phase flow, boiling and condensation for graduate students, professionals, and researchers in mechanical, nuclear, and chemical engineering. The book provides a balanced coverage of two-phase flow and phase change fundamentals, well-established art and science dealing with conventional systems, and the rapidly developing areas of microchannel flow and heat transfer. It is based on the author's more than 15 years of teaching experience. Instructors teaching multiphase flow have had to rely on a multitude of books and reference materials. This book remedies that problem by covering all the topics essential for a graduate course. Important areas include: two-phase flow model conservation equations and their numerical solution; condensation with and without noncondensables; and two-phase flow, boiling, and condensation in mini and microchannels.




Thermo-fluid Dynamics of Two-Phase Flow


Book Description

This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.




Two-Phase Flow, Boiling, and Condensation


Book Description

Providing a comprehensive introduction to the fundamentals and applications of flow and heat transfer in conventional and miniature systems, this fully enhanced and updated edition covers all the topics essential for graduate courses on two-phase flow, boiling, and condensation. Beginning with a concise review of single-phase flow fundamentals and interfacial phenomena, detailed and clear discussion is provided on a range of topics, including two-phase hydrodynamics and flow regimes, mathematical modeling of gas-liquid two-phase flows, pool and flow boiling, flow and boiling in mini and microchannels, external and internal-flow condensation with and without noncondensables, condensation in small flow passages, and two-phase choked flow. Numerous solved examples and end-of-chapter problems that include many common design problems likely to be encountered by students, make this an essential text for graduate students. With up-to-date detail on the most recent research trends and practical applications, it is also an ideal reference for professionals and researchers in mechanical, nuclear, and chemical engineering.




Thermo-fluid Dynamics of Two-Phase Flow


Book Description

This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.




Two-Phase Flow


Book Description

This graduate text provides a unified treatment of the fundamental principles of two-phase flow and shows how to apply the principles to a variety of homogeneous mixture as well as separated liquid-liquid, gas-solid, liquid-solid, and gas-liquid flow problems, which may be steady or transient, laminar or turbulent.Each chapter contains several sample problems, which illustrate the outlined theory and provide approaches to find simplified analytic descriptions of complex two-phase flow phenomena.This well-balanced introductory text will be suitable for advanced seniors and graduate students in mechanical, chemical, biomedical, nuclear, environmental and aerospace engineering, as well as in applied mathematics and the physical sciences. It will be a valuable reference for practicing engineers and scientists. A solutions manual is available to qualified instructors.




Two-Phase Flow


Book Description

This graduate text provides a unified treatment of the fundamental principles of two-phase flow and shows how to apply the principles to a variety of homogeneous mixture as well as separated liquid-liquid, gas-solid, liquid-solid, and gas-liquid flow problems, which may be steady or transient, laminar or turbulent.Each chapter contains several sample problems, which illustrate the outlined theory and provide approaches to find simplified analytic descriptions of complex two-phase flow phenomena.This well-balanced introductory text will be suitable for advanced seniors and graduate students in mechanical, chemical, biomedical, nuclear, environmental and aerospace engineering, as well as in applied mathematics and the physical sciences. It will be a valuable reference for practicing engineers and scientists. A solutions manual is available to qualified instructors.