MicroC/OS-II


Book Description

MicroC/OS II Second Edition describes the design and implementation of the MicroC/OS-II real-time operating system (RTOS). In addition to its value as a reference to the kernel, it is an extremely detailed and highly readable design study particularly useful to the embedded systems student. While documenting the design and implementation of the ker




UC/OS-III


Book Description

This two-part book puts the spotlight on how a real-time kernel works using Micrium's C/OS-III kernel as a reference. Part I includes an overview of the operation of real-time kernels, and walks through various aspects of C/OS-III implementation and usage. Part II provides application examples (using the versatile Renesas YRDKSH7216 Evaluation Board, available separately) that enable readers to rapidly develop their own prototypes. This book is written for serious embedded systems programmers, consultants, hobbyists, and students interested in understanding the inner workings of a real-time kernel. C/OS-III is not just a great learning platform, but also a full commercial-grade software package, ready to be part of a wide range of products. C/OS-III is a highly portable, ROMable, scalable, preemptive real-time, multitasking kernel designed specifically to address the demanding requirements of today 's embedded systems. C/OS-III is the successor to the highly popular C/OS-II real-time kernel but can use most of C/OS-II 's ports with minor modifications. Some of the features of C/OS-III are: Preemptive multitasking with round-robin scheduling of tasks at the same priority Supports and unlimited number of tasks and other kernel objects Rich set of services: semaphores, mutual exclusion semaphores with full priority inheritance, event flags, message queues, timers, fixed-size memory block management, and more. Built-in performance measurements




An Embedded Software Primer


Book Description

Simon introduces the broad range of applications for embedded software and then reviews each major issue facing developers, offering practical solutions, techniques, and good habits that apply no matter which processor, real-time operating systems, methodology, or application is used.




Introduction to Embedded Systems, Second Edition


Book Description

An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.




Hands-On RTOS with Microcontrollers


Book Description

Build a strong foundation in designing and implementing real-time systems with the help of practical examples Key Features Get up and running with the fundamentals of RTOS and apply them on STM32 Enhance your programming skills to design and build real-world embedded systems Get to grips with advanced techniques for implementing embedded systems Book DescriptionA real-time operating system (RTOS) is used to develop systems that respond to events within strict timelines. Real-time embedded systems have applications in various industries, from automotive and aerospace through to laboratory test equipment and consumer electronics. These systems provide consistent and reliable timing and are designed to run without intervention for years. This microcontrollers book starts by introducing you to the concept of RTOS and compares some other alternative methods for achieving real-time performance. Once you've understood the fundamentals, such as tasks, queues, mutexes, and semaphores, you'll learn what to look for when selecting a microcontroller and development environment. By working through examples that use an STM32F7 Nucleo board, the STM32CubeIDE, and SEGGER debug tools, including SEGGER J-Link, Ozone, and SystemView, you'll gain an understanding of preemptive scheduling policies and task communication. The book will then help you develop highly efficient low-level drivers and analyze their real-time performance and CPU utilization. Finally, you'll cover tips for troubleshooting and be able to take your new-found skills to the next level. By the end of this book, you'll have built on your embedded system skills and will be able to create real-time systems using microcontrollers and FreeRTOS.What you will learn Understand when to use an RTOS for a project Explore RTOS concepts such as tasks, mutexes, semaphores, and queues Discover different microcontroller units (MCUs) and choose the best one for your project Evaluate and select the best IDE and middleware stack for your project Use professional-grade tools for analyzing and debugging your application Get FreeRTOS-based applications up and running on an STM32 board Who this book is for This book is for embedded engineers, students, or anyone interested in learning the complete RTOS feature set with embedded devices. A basic understanding of the C programming language and embedded systems or microcontrollers will be helpful.




Simple Real-time Operating System


Book Description

Do you think RTOS kernel is a complex black box and hard to implement? Shred your opinion and transform your self from the beginner of RTOS to a designer.




Understanding the Linux Kernel


Book Description

To thoroughly understand what makes Linux tick and why it's so efficient, you need to delve deep into the heart of the operating system--into the Linux kernel itself. The kernel is Linux--in the case of the Linux operating system, it's the only bit of software to which the term "Linux" applies. The kernel handles all the requests or completed I/O operations and determines which programs will share its processing time, and in what order. Responsible for the sophisticated memory management of the whole system, the Linux kernel is the force behind the legendary Linux efficiency. The new edition of Understanding the Linux Kernel takes you on a guided tour through the most significant data structures, many algorithms, and programming tricks used in the kernel. Probing beyond the superficial features, the authors offer valuable insights to people who want to know how things really work inside their machine. Relevant segments of code are dissected and discussed line by line. The book covers more than just the functioning of the code, it explains the theoretical underpinnings for why Linux does things the way it does. The new edition of the book has been updated to cover version 2.4 of the kernel, which is quite different from version 2.2: the virtual memory system is entirely new, support for multiprocessor systems is improved, and whole new classes of hardware devices have been added. The authors explore each new feature in detail. Other topics in the book include: Memory management including file buffering, process swapping, and Direct memory Access (DMA) The Virtual Filesystem and the Second Extended Filesystem Process creation and scheduling Signals, interrupts, and the essential interfaces to device drivers Timing Synchronization in the kernel Interprocess Communication (IPC) Program execution Understanding the Linux Kernel, Second Edition will acquaint you with all the inner workings of Linux, but is more than just an academic exercise. You'll learn what conditions bring out Linux's best performance, and you'll see how it meets the challenge of providing good system response during process scheduling, file access, and memory management in a wide variety of environments. If knowledge is power, then this book will help you make the most of your Linux system.




Embedded Systems


Book Description




Operating Systems


Book Description

"This book is organized around three concepts fundamental to OS construction: virtualization (of CPU and memory), concurrency (locks and condition variables), and persistence (disks, RAIDS, and file systems"--Back cover.




Embedded Systems Building Blocks


Book Description

- This second edition features revisions that support the latest version of the author's popular operating system and book, MicroC/OS-II - Complete and ready-to-use modules in C Get a clear explanation of functional code modules and microcontroller theory




Recent Books