Ultra Low Power Electronics and Adiabatic Solutions


Book Description

The improvement of energy efficiency in electronics and computing systems is currently central to information and communication technology design; low-cost cooling, autonomous portable systems and functioning on recovered energy all need to be continuously improved to allow modern technology to compute more while consuming less. This book presents the basic principles of the origins and limits of heat dissipation in electronic systems. Mechanisms of energy dissipation, the physical foundations for understanding CMOS components and sophisticated optimization techniques are explored in the first half of the book, before an introduction to reversible and quantum computing. Adiabatic computing and nano-relay technology are then explored as new solutions to achieving improvements in heat creation and energy consumption, particularly in renewed consideration of circuit architecture and component technology. Concepts inspired by recent research into energy efficiency are brought together in this book, providing an introduction to new approaches and technologies which are required to keep pace with the rapid evolution of electronics.




Emerging Devices for Low-Power and High-Performance Nanosystems


Book Description

The history of information and communications technologies (ICT) has been paved by both evolutive paths and challenging alternatives, so-called emerging devices and architectures. Their introduction poses the issues of state variable definition, information processing, and process integration in 2D, above IC, and in 3D. This book reviews the capabilities of integrated nanosystems to match low power and high performance either by hybrid and heterogeneous CMOS in 2D/3D or by emerging devices for alternative sensing, actuating, data storage, and processing. The choice of future ICTs will need to take into account not only their energy efficiency but also their sustainability in the global ecosystem.




Neuro-inspired Information Processing


Book Description

With the end of Moore's law and the emergence of new application needs such as those of the Internet of Things (IoT) or artificial intelligence (AI), neuro-inspired, or neuromorphic, information processing is attracting more and more attention from the scientific community. Its principle is to emulate in a simplified way the formidable machine to process information which is the brain, with neurons and artificial synapses organized in network. These networks can be software and therefore implemented in the form of a computer program but also hardware and produced by nanoelectronic circuits. The material path allows very low energy consumption, and the possibility of faithfully reproducing the shape and dynamics of the action potentials of living neurons (biomimetic approach) or even being up to a thousand times faster (high frequency approach). This path is promising and welcomed by the major manufacturers of nanoelectronics, as circuits can now today integrate several million neurons and artificial synapses.




Analog Electronics for Measuring Systems


Book Description

Many instrumentation engineers and scientists often deal with analog electronic issues when approaching delicate measurements. Even if off-the-shelf measuring solutions exist, comprehension of the analog behavior of the measuring system is often a necessity. This book provides a concise introduction to the main elements of a low frequency analog acquisition chain. It aims to be sufficiently general to provide an introduction, yet specific enough to guide the reader through some classical problems that may be encountered in the subject. Topics include sensors, conditioning circuits, differential and instrumentation amplifiers, active filters (mainly for anti-aliasing purposes) and analog to digital converters. A chapter is devoted to an introduction to noise and electronic compatibility. This work is intended for people with a general background in electronics and signal processing, who are looking for an introduction to classical electronic solutions employed in measuring instruments involving low frequency analog signal processing.




Fundamentals of Electronics 3


Book Description

Over the last 60 years, electronics has undergone important and rapid developments. This has generated a large range of theoretical and practical notions. This book presents a comprehensive treatise on the evolution of electronics and allows the reader to grasp both the fundamental concepts and the associated practical applications through examples and exercises. Following on from Volume 1, which studied elementary devices, their electrical models and basic functions, Volume 2 was devoted to linear and stationary systems in the continuous-time regime. This third volume deals with the properties of discrete-time and quantized level systems over two chapters. The first presents an analysis of sampled signals and systems, with applications on switched capacitors circuits, analog and digital phase locked loops, frequency synthesis and filters characterized by either finite or infinite impulse response. Most tools are useful to elucidate the properties of both analog and digital systems. The second chapter focuses on the properties of analog-to-digital and digital-to-analog converters. Various principles that are used to perform these conversions are described. Finally, a large section is devoted to sigma-delta converters. Throughout this whole chapter, the signal-to-noise ratio, which is a central issue in these quantized level systems, is analyzed and discussed. Both chapters are followed by useful exercises which illustrate the general principles addressed. The exercises further build on the material covered in the chapters, particularly that which may not have been covered in detail.




Fundamentals of Electronics 2


Book Description

This book presents a synthesis of Electronics through keynotes which are substantiated in three volumes. The first one comprises four chapters devoted to elementary devices, i.e. diodes, bipolar transistors and related devices, field effect transistors and amplifiers. In each of one, device physics, non linear and linearized models, and applications are studied. The second volume is devoted to systems in the continuous time regime and contains two chapters: one describes different approaches to the transfer function concept and applications, and the following deals with the quadripole properties, filtering and filter synthesis. The third volume presents the various aspects of sampling systems and quantized level systems in the two last chapters.




Organic Electronics 2


Book Description

Due to their special properties, organic semiconductors enable the development of large-area, low-cost devices, paving the way for flexible and nomadic applications that advantageously replace those made with traditional semiconductors. In this second volume, we study the main applications of organic semiconductors, such as organic light-emitting diodes (OLEDs), solar cells (OPVs) and organic field-effect transistors (OFETs). The commercialization of these new devices is then discussed within the Brabec triangle framework, in which yield, stability and production costs are the key factors. We also address the environmental impact of organic devices for their future development. This book presents the application side of organic electronics from a technological, economic and environmental perspective. It is intended for researchers and students in university programs or engineering schools specializing in electronics, energy and materials.




Fundamentals of Electronics 1


Book Description

Electronics has undergone important and rapid developments over the last 60 years, which have generated a large range of theoretical and practical notions. This book presents a comprehensive treatise of the evolution of electronics for the reader to grasp both fundamental concepts and the associated practical applications through examples and exercises. This first volume of the Fundamentals of Electronics series comprises four chapters devoted to elementary devices, i.e. diodes, bipolar junction transistors and related devices, field effect transistors and amplifiers, their electrical models and the basic functions they can achieve. Volumes to come will deal with systems in the continuous time regime, the various aspects of sampling signals and systems using analog (A) and digital (D) treatments, quantized level systems, as well as DA and AD converter principles and realizations.




Organic Electronics 1


Book Description

Due to their special properties, organic semiconductors enable the development of large-area, low-cost devices, paving the way for flexible and nomadic applications that advantageously replace those made with traditional semiconductors. This book describes the properties and deposition methods of organic semiconductors, transparent conductive materials or metals which are used in the fabrication of organic devices. The physical processes (optical, electrical and interface) that control the mechanisms in the formation and transport of the charge carriers of the materials are studied and explained in detail. Organic Electronics 1 introduces the fundamental and applied aspects of the field of organic electronics. It is intended for researchers and students in university programs or engineering schools specializing in electronics, energy and materials.




Noise in Radio-Frequency Electronics and its Measurement


Book Description

The ability of wireless communication devices to transmit reliable information is fundamentally limited by sources of noise related to the electronic components in use. Noise in Radio-Frequency Electronics and its Measurement has five chapters that address the theoretical aspects of this subject, and concludes with a series of exercises and solutions. The book examines the origin and sources of noise inside electronic radio-frequency circuits, their impact in telecommunications, their modeling and their measurement. Particular attention is dedicated to the origins, establishment and significance of formulas that are used when the noise characteristics of an electronic circuit are modeled or measured. This book instructs the reader in the application of the examined methods and their adaptation to solving problems, as well as how to comfortably use the presented formulas.