Uncertainty in Artificial Intelligence 2


Book Description

This second volume is arranged in four sections: Analysis contains papers which compare the attributes of various approaches to uncertainty. Tools provides sufficient information for the reader to implement uncertainty calculations. Papers in the Theory section explain various approaches to uncertainty. The Applications section describes the difficulties involved in, and the results produced by, incorporating uncertainty into actual systems.




Artificial Intelligence with Uncertainty


Book Description

This book develops a framework that shows how uncertainty in Artificial Intelligence (AI) expands and generalizes traditional AI. It explores the uncertainties of knowledge and intelligence. The authors focus on the importance of natural language – the carrier of knowledge and intelligence, and introduce efficient physical methods for data mining amd control. In this new edition, we have more in-depth description of the models and methods, of which the mathematical properties are proved strictly which make these theories and methods more complete. The authors also highlight their latest research results.




Uncertainty in Artificial Intelligence


Book Description

Hardbound. How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.




Artificial Intelligence


Book Description

Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.




The Alignment Problem: Machine Learning and Human Values


Book Description

A jaw-dropping exploration of everything that goes wrong when we build AI systems and the movement to fix them. Today’s “machine-learning” systems, trained by data, are so effective that we’ve invited them to see and hear for us—and to make decisions on our behalf. But alarm bells are ringing. Recent years have seen an eruption of concern as the field of machine learning advances. When the systems we attempt to teach will not, in the end, do what we want or what we expect, ethical and potentially existential risks emerge. Researchers call this the alignment problem. Systems cull résumés until, years later, we discover that they have inherent gender biases. Algorithms decide bail and parole—and appear to assess Black and White defendants differently. We can no longer assume that our mortgage application, or even our medical tests, will be seen by human eyes. And as autonomous vehicles share our streets, we are increasingly putting our lives in their hands. The mathematical and computational models driving these changes range in complexity from something that can fit on a spreadsheet to a complex system that might credibly be called “artificial intelligence.” They are steadily replacing both human judgment and explicitly programmed software. In best-selling author Brian Christian’s riveting account, we meet the alignment problem’s “first-responders,” and learn their ambitious plan to solve it before our hands are completely off the wheel. In a masterful blend of history and on-the ground reporting, Christian traces the explosive growth in the field of machine learning and surveys its current, sprawling frontier. Readers encounter a discipline finding its legs amid exhilarating and sometimes terrifying progress. Whether they—and we—succeed or fail in solving the alignment problem will be a defining human story. The Alignment Problem offers an unflinching reckoning with humanity’s biases and blind spots, our own unstated assumptions and often contradictory goals. A dazzlingly interdisciplinary work, it takes a hard look not only at our technology but at our culture—and finds a story by turns harrowing and hopeful.




Reasoning about Uncertainty, second edition


Book Description

Formal ways of representing uncertainty and various logics for reasoning about it; updated with new material on weighted probability measures, complexity-theoretic considerations, and other topics. In order to deal with uncertainty intelligently, we need to be able to represent it and reason about it. In this book, Joseph Halpern examines formal ways of representing uncertainty and considers various logics for reasoning about it. While the ideas presented are formalized in terms of definitions and theorems, the emphasis is on the philosophy of representing and reasoning about uncertainty. Halpern surveys possible formal systems for representing uncertainty, including probability measures, possibility measures, and plausibility measures; considers the updating of beliefs based on changing information and the relation to Bayes' theorem; and discusses qualitative, quantitative, and plausibilistic Bayesian networks. This second edition has been updated to reflect Halpern's recent research. New material includes a consideration of weighted probability measures and how they can be used in decision making; analyses of the Doomsday argument and the Sleeping Beauty problem; modeling games with imperfect recall using the runs-and-systems approach; a discussion of complexity-theoretic considerations; the application of first-order conditional logic to security. Reasoning about Uncertainty is accessible and relevant to researchers and students in many fields, including computer science, artificial intelligence, economics (particularly game theory), mathematics, philosophy, and statistics.




Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis


Book Description

This book constitutes the refereed proceedings of the Second International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2020, and the Third International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic. For UNSURE 2020, 10 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. GRAIL 2020 accepted 10 papers from the 12 submissions received. The workshop aims to bring together scientists that use and develop graph-based models for the analysis of biomedical images and to encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts.




Uncertainty in Artificial Intelligence


Book Description

Uncertainty in Artificial Intelligence contains the proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence held at the Catholic University of America in Washington, DC, on July 9-11, 1993. The papers focus on methods of reasoning and decision making under uncertainty as applied to problems in artificial intelligence (AI) and cover topics ranging from knowledge acquisition and automated model construction to learning, planning, temporal reasoning, and machine vision. Comprised of 66 chapters, this book begins with a discussion on causality in Bayesian belief networks before turning to a decision theoretic account of conditional ought statements that rectifies glaring deficiencies in classical deontic logic and forms a sound basis for qualitative decision theory. Subsequent chapters explore trade-offs in constructing and evaluating temporal influence diagrams; normative engineering risk management systems; additive belief-network models; and sensitivity analysis for probability assessments in Bayesian networks. Automated model construction and learning as well as algorithms for inference and decision making are also considered. This monograph will be of interest to both students and practitioners in the fields of AI and computer science.




Uncertainty in Artificial Intelligence


Book Description

Uncertainty in Artificial Intelligence: Proceedings of the Eighth Conference (1992) covers the papers presented at the Eighth Conference on Uncertainty in Artificial Intelligence, held at Stanford University on July 17-19, 1992. The book focuses on the processes, methodologies, technologies, and approaches involved in artificial intelligence. The selection first offers information on Relative Evidential Support (RES), modal logics for qualitative possibility and beliefs, and optimizing causal orderings for generating DAGs from data. Discussions focus on reversal, swap, and unclique operators, modal representation of possibility, and beliefs and conditionals. The text then examines structural controllability and observability in influence diagrams, lattice-based graded logic, and dynamic network models for forecasting. The manuscript takes a look at reformulating inference problems through selective conditioning, entropy and belief networks, parallelizing probabilistic inference, and a symbolic approach to reasoning with linguistic quantifiers. The text also ponders on sidestepping the triangulation problem in Bayesian net computations; exploring localization in Bayesian networks for large expert systems; and expressing relational and temporal knowledge in visual probabilistic networks. The selection is a valuable reference for researchers interested in artificial intelligence.




Uncertainty in Artificial Intelligence


Book Description

This volume contains papers accepted for presentation at the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI99) held at the Royal Institute of Technology (KTH) in Stockholm, Sweden from July 30 through August 1, 1999. This conference continues a 15-year tradition of providing an international forum for exchange of ideas on problems of reasoning, under uncertainty. During those 15 years, UAI has moved from a little-noticed niche at the edge of the field, solidly into the mainstream of artificial intelligence research and practice. Research first presented at UAI has contributed significantly to advances in a number of related fields and has found application in a wide variety of domains. The UAI conference has acquired a reputation for excellence, and the proceedings have become an important reference source for high-quality work in the field.