Children'S Ideas In Science


Book Description

This book documents and explores the ideas of school students (aged 10-16) about a range of natural phenomena such as light, heat, force and motion, the structure of matter and electricity, they are to study even when they have received no prior systematic instruction. It also examines how students' conceptions change and develop with teaching.




Taking Science to School


Book Description

What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.







Making Sense of Secondary Science


Book Description

When children begin secondary school they already have knowledge and ideas about many aspects of the natural world from their experiences both in primary classes and outside school. These ideas, right or wrong, form the basis of all they subsequently learn. Research has shown that teaching is unlikely to be effective unless it takes into account the position from which the learner starts. Making Sense of Secondary Science provides a concise and accessible summary of the research that has been done internationally in this area. The research findings are arranged in three main sections: * life and living processes * materials and their properties * physical processes. Full bibliographies in each section allow interested readers to pursue the themes further. Much of this material has hitherto been available only in limited circulation specialist journals or in unpublished research. Its publication in this convenient form will be welcomed by all researchers in science education and by practicing science teachers continuing their professional development, who want to deepen their understanding of how their children think and learn.




Children's Informal Ideas in Science


Book Description

The ideas that children have about science concepts have for the past decade been the subject of a wealth of international research. But while the area has been strong in terms of data, it has suffered from a lack of theory. Children's Informal Ideas in Science addresses the question of whether children's ideas about science can be explained in a single theoretical framework. Twelve different approaches combine to tackle this central issue, each taking a deliberately critical standpoint. The contributors address such themes as values in research, the social construction of knowledge and the work of Piaget in a rich contribution to the debate without claiming finally to resolve it. The authors conclude with a discussion of how a theory can be built up, along with suggestions for ways ahead in the research.




Mindstorms


Book Description

In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.




Making and Tinkering with STEM


Book Description

Explore STEM concepts through making and tinkering!




The Science Book


Book Description

Now in Paperback! Take science to a whole new level. Created in partnership with Prentice Hall, the Big Idea Science Book is a comprehensive guide to key topics in science falling into four major strands (Living Things, Earth Science, Chemistry, and Physics), with a unique difference — a website component with 200 specially created digital assets that provide the opportunity for hands-on, interactive learning.




Teaching for Conceptual Understanding in Science


Book Description

What do you get when you bring together two of NSTA’s bestselling authors to ponder ways to deepen students’ conceptual understanding of science? A fascinating combination of deep thinking about science teaching, field-tested strategies you can use in your classroom immediately, and personal vignettes all educators can relate to and apply themselves. Teaching for Conceptual Understanding in Science is by Richard Konicek-Moran, a researcher and professor who wrote the Everyday Science Mysteries series, and Page Keeley, a practitioner and teacher educator who writes the Uncovering Student Ideas in Science series. Written in an appealing, conversational style, this new book explores where science education has been and where it’s going; emphasizes how knowing the history and nature of science can help you engage in teaching for conceptual understanding and conceptual change; stresses the importance of formative assessment as a pathway to conceptual change; and provides a bridge between research and practice. This is the kind of thought-provoking book that can truly change the way you teach. Whether you read each chapter in sequence or start by browsing the topics in the vignettes, Konicek-Moran and Keeley will make you think—really think—about the major goal of science education in the 21st century: to help students understand science at the conceptual level so they can see its connections to other fields, other concepts, and their own lives.