Understanding Downhole Microseismic Data Analysis


Book Description

This book is designed as an excellent resource text for students and professionals, providing an in-depth overview of the theory and applications of downhole microseismic monitoring of hydraulic fracturing. The readers will benefit greatly from the detailed explanation on the processes and workflows involved in the acquisition design modeling, processing and interpretation of microseismic data.




Induced Seismicity Potential in Energy Technologies


Book Description

In the past several years, some energy technologies that inject or extract fluid from the Earth, such as oil and gas development and geothermal energy development, have been found or suspected to cause seismic events, drawing heightened public attention. Although only a very small fraction of injection and extraction activities among the hundreds of thousands of energy development sites in the United States have induced seismicity at levels noticeable to the public, understanding the potential for inducing felt seismic events and for limiting their occurrence and impacts is desirable for state and federal agencies, industry, and the public at large. To better understand, limit, and respond to induced seismic events, work is needed to build robust prediction models, to assess potential hazards, and to help relevant agencies coordinate to address them. Induced Seismicity Potential in Energy Technologies identifies gaps in knowledge and research needed to advance the understanding of induced seismicity; identify gaps in induced seismic hazard assessment methodologies and the research to close those gaps; and assess options for steps toward best practices with regard to energy development and induced seismicity potential.




Advances and Applications of Passive Seismic Source Characterization


Book Description

Source characterization is a fundamental task of passive seismic monitoring. Spatial-temporal evolution of both, point sources and finite-fault source, provides essential information for timely seismic hazard management and advanced analysis of the seismicity in the monitored areas. In the last few decades, the rise of dense seismic arrays, increase of high-performance computing resources, and development of advanced array-based techniques lead to studies using recorded wavefields in great detail. Full waveform inversion can invert passive seismic source parameters with an iterative framework, which connects the delay-and-sum imaging technique and kernel-based inversion strategy. Moreover, emerging technologies like distributed acoustic sensing and machine learning also have great potential in advancing passive seismic imaging and source characterization. Besides, non-earthquake sources and ambient noise, as unconventional and passive sources, are also undergoing rapid development in infrastructure monitoring and subsurface imaging, due to the emergence of sensitive sensors and modern techniques like seismic interferometry.




Microseismic Imaging of Hydraulic Fracturing


Book Description

Microseismic Imaging of Hydraulic Fracturing: Improved Engineering of Unconventional Shale Reservoirs (SEG Distinguished Instructor Series No. 17) covers the use of microseismic data to enhance engineering design of hydraulic fracturing and well completion. The book, which accompanies the 2014 SEG Distinguished Instructor Short Course, describes the design, acquisition, processing, and interpretation of an effective microseismic project. The text includes a tutorial of the basics of hydraulic fracturing, including the geologic and geomechanical factors that control fracture growth. In addition to practical issues associated with collecting and interpreting microseismic data, potential pitfalls and quality-control steps are discussed. Actual case studies are used to demonstrate engineering benefits and improved production through the use of microseismic monitoring. Providing a practical user guide for survey design, quality control, interpretation, and application of microseismic hydraulic fracture monitoring, this book will be of interest to geoscientists and engineers involved in development of unconventional reservoirs.




Anisotropy and Microseismics: Theory and Practice


Book Description

Downhole microseismic monitoring of stimulation and production of unconventional reservoirs has resulted in renewed industry interest in seismic anisotropy. This occurred not only because anisotropy of hydrocarbon-bearing shales is among the strongest in rocks but also because downhole microseismics shifts the focus from the standard exploration of P-waves to shear waves. The consequences of the difference in wave type are profound for geophysicists because everyone involved - from theoreticians to developers and users of microseismic data-processing software - must be aware of shear-wave splitting, singularities, and multivalued wavefronts, which have been largely irrelevant for P-waves propagating in relatively simple geologic settings. Anisotropy and Microseismics leads readers on a path of discovery of rarely examined wave phenomena and their possible usage. Most of the chapters begin by formulating a question, followed by explanations of what is exciting about it, where the mystery might lie, and what could be the potential value of answering the question. Importantly, the findings entail useful applications, as showcased by the unmistakably practical flavor of the chapters on microseismic event location, moment tensor inversion, and imaging. As an investigation of microseismic methodologies and techniques is conducted, it often yields unexpected results.




Microseismic Monitoring


Book Description

Over the past decade, microseismic monitoring, a technology developed for evaluating completions of wells drilled to produce hydrocarbons from unconventional reservoirs, has grown increasingly popular among oil and gas companies. Microseismic Monitoring, by Vladimir Grechka and Werner M. Heigl, discusses how to process microseismic data, what can and cannot be inferred from such data, and to what level of certainty this might be possible. The narrative of the book follows the passage of seismic waves: from a source triggered by hydraulic fracture stimulation, through hydrocarbon-bearing formations, towards motion sensors. The waves’ characteristics encode the location of their source and its focal mechanism. The analysis of various approaches to harvesting the source-related information from microseismic records has singled out the accuracy of the velocity model, fully accounting for the strong elastic anisotropy of hydraulically fractured shales, as the most critical ingredient for obtaining precise source locations and interpretable moment tensors. The ray theory complemented by its modern extensions, paraxial and Fréchet ray tracing, provides the only practical means available today for building such models. The book is written for geophysicists interested in learning and applying advanced microseismic data-processing techniques.




AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application


Book Description

These proceedings address a broad range of topic areas, including telecommunication, power systems, digital signal processing, robotics, control systems, renewable energy, power electronics, soft computing and more. Today’s world is based on vitally important technologies that combine e.g. electronics, cybernetics, computer science, telecommunication, and physics. However, since the advent of these technologies, we have been confronted with numerous technological challenges such as finding optimal solutions to various problems regarding controlling technologies, signal processing, power source design, robotics, etc. Readers will find papers on these and other topics, which share fresh ideas and provide state-of-the-art overviews. They will also benefit practitioners, who can easily apply the issues discussed here to solve real-life problems in their own work. Accordingly, the proceedings offer a valuable resource for all scientists and engineers pursuing research and applications in the above-mentioned fields.




Unconventional Petroleum Geology


Book Description

Unconventional Petroleum Geology, Second Edition presents the latest research results of global conventional and unconventional petroleum exploration and production. The first part covers the basics of unconventional petroleum geology, its introduction, concept of unconventional petroleum geology, unconventional oil and gas reservoirs, and the origin and distribution of unconventional oil and gas. The second part is focused on unconventional petroleum development technologies, including a series of technologies on resource assessment, lab analysis, geophysical interpretation, and drilling and completion. The third and final section features case studies of unconventional hydrocarbon resources, including tight oil and gas, shale oil and gas, coal bed methane, heavy oil, gas hydrates, and oil and gas in volcanic and metamorphic rocks. - Provides an up-to-date, systematic, and comprehensive overview of all unconventional hydrocarbons - Reorganizes and updates more than half of the first edition content, including four new chapters - Includes a glossary on unconventional petroleum types, including tight-sandstone oil and gas, coal-bed gas, shale gas, oil and gas in fissure-cave-type carbonate rocks, in volcanic reservoirs, and in metamorphic rocks, heavy crude oil and natural bitumen, and gas hydrates - Presents new theories, new methods, new technologies, and new management methods, helping to meet the demands of technology development and production requirements in unconventional plays




Unconventional Reservoir Geomechanics


Book Description

A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.




Advances in Noise Reduction and Feature Extraction of Acoustic Signal


Book Description

Acoustic signal is one of the hot topics of research in physics and has been studied by many engineers and scientists in various real-world fields, including underwater acoustics, architectural acoustics, engineering acoustics, physical acoustics, environmental acoustics, psychological acoustics, and so on. Noise reduction is the foundation of acoustic signal pre-processing, and the feature extraction for noise reduction signals can obtain useful information from the acoustic signal, which is the linchpin for pattern recognition, target detection, tracking, and localization.