Introduction to Formal Languages


Book Description

Covers all areas, including operations on languages, context-sensitive languages, automata, decidability, syntax analysis, derivation languages, and more. Numerous worked examples, problem exercises, and elegant mathematical proofs. 1983 edition.




Handbook of Formal Languages


Book Description

This third volume of the Handbook of Formal Languages discusses language theory beyond linear or string models: trees, graphs, grids, pictures, computer graphics. Many chapters offer an authoritative self-contained exposition of an entire area. Special emphasis is on interconnections with logic.







An Introduction to Formal Languages and Automata


Book Description

An Introduction to Formal Languages & Automata provides an excellent presentation of the material that is essential to an introductory theory of computation course. The text was designed to familiarize students with the foundations & principles of computer science & to strengthen the students' ability to carry out formal & rigorous mathematical argument. Employing a problem-solving approach, the text provides students insight into the course material by stressing intuitive motivation & illustration of ideas through straightforward explanations & solid mathematical proofs. By emphasizing learning through problem solving, students learn the material primarily through problem-type illustrative examples that show the motivation behind the concepts, as well as their connection to the theorems & definitions.




Formal Languages and Compilation


Book Description

This revised and expanded new edition elucidates the elegance and simplicity of the fundamental theory underlying formal languages and compilation. Retaining the reader-friendly style of the 1st edition, this versatile textbook describes the essential principles and methods used for defining the syntax of artificial languages, and for designing efficient parsing algorithms and syntax-directed translators with semantic attributes. Features: presents a novel conceptual approach to parsing algorithms that applies to extended BNF grammars, together with a parallel parsing algorithm (NEW); supplies supplementary teaching tools at an associated website; systematically discusses ambiguous forms, allowing readers to avoid pitfalls; describes all algorithms in pseudocode; makes extensive usage of theoretical models of automata, transducers and formal grammars; includes concise coverage of algorithms for processing regular expressions and finite automata; introduces static program analysis based on flow equations.




A Course in Formal Languages, Automata and Groups


Book Description

This book is based on notes for a master’s course given at Queen Mary, University of London, in the 1998/9 session. Such courses in London are quite short, and the course consisted essentially of the material in the ?rst three chapters, together with a two-hour lecture on connections with group theory. Chapter 5 is a considerably expanded version of this. For the course, the main sources were the books by Hopcroft and Ullman ([20]), by Cohen ([4]), and by Epstein et al. ([7]). Some use was also made of a later book by Hopcroft and Ullman ([21]). The ulterior motive in the ?rst three chapters is to give a rigorous proof that various notions of recursively enumerable language are equivalent. Three such notions are considered. These are: generated by a type 0 grammar, recognised by a Turing machine (deterministic or not) and de?ned by means of a Godel ̈ numbering, having de?ned “recursively enumerable” for sets of natural numbers. It is hoped that this has been achieved without too many ar- ments using complicated notation. This is a problem with the entire subject, and it is important to understand the idea of the proof, which is often quite simple. Two particular places that are heavy going are the proof at the end of Chapter 1 that a language recognised by a Turing machine is type 0, and the proof in Chapter 2 that a Turing machine computable function is partial recursive.




Formal Language Theory


Book Description

Formal Language Theory: Perspectives and Open Problems focuses on the trends and major open problems on the formal language theory. The selection first ponders on the methods for specifying families of formal languages, open problems about regular languages, and generators of cones and cylinders. Discussions focus on cylinders of algebraic languages, cone of algebraic languages, regularity of noncounting classes, group complexity, specification formalism, and grammars. The publication then elaborates on very small families of algebraic nonrational languages and formal languages and their relation to automata. The book tackles morphisms on free monoids and language theory, homomorphisms, and survey of results and open problems in the mathematical theory of L systems. Topics include single finite substitutions iterated, single homomorphisms iterated, representation of language families, homomorphism equivalence on a language, and problems about infinite words. The selection is a valuable source of data for researchers interested in the formal language theory.




Automata Theory and Formal Languages


Book Description

The book is a concise, self-contained and fully updated introduction to automata theory – a fundamental topic of computer sciences and engineering. The material is presented in a rigorous yet convincing way and is supplied with a wealth of examples, exercises and down-to-the earth convincing explanatory notes. An ideal text to a spectrum of one-term courses in computer sciences, both at the senior undergraduate and graduate students.




Theory Of Automata, Formal Languages And Computation (As Per Uptu Syllabus)


Book Description

This Book Is Aimed At Providing An Introduction To The Basic Models Of Computability To The Undergraduate Students. This Book Is Devoted To Finite Automata And Their Properties. Pushdown Automata Provides A Class Of Models And Enables The Analysis Of Context-Free Languages. Turing Machines Have Been Introduced And The Book Discusses Computability And Decidability. A Number Of Problems With Solutions Have Been Provided For Each Chapter. A Lot Of Exercises Have Been Given With Hints/Answers To Most Of These Tutorial Problems.




Formal Languages and Computation


Book Description

Formal Languages and Computation: Models and Their Applications gives a clear, comprehensive introduction to formal language theory and its applications in computer science. It covers all rudimental topics concerning formal languages and their models, especially grammars and automata, and sketches the basic ideas underlying the theory of computation, including computability, decidability, and computational complexity. Emphasizing the relationship between theory and application, the book describes many real-world applications, including computer science engineering techniques for language processing and their implementation. Covers the theory of formal languages and their models, including all essential concepts and properties Explains how language models underlie language processors Pays a special attention to programming language analyzers, such as scanners and parsers, based on four language models—regular expressions, finite automata, context-free grammars, and pushdown automata Discusses the mathematical notion of a Turing machine as a universally accepted formalization of the intuitive notion of a procedure Reviews the general theory of computation, particularly computability and decidability Considers problem-deciding algorithms in terms of their computational complexity measured according to time and space requirements Points out that some problems are decidable in principle, but they are, in fact, intractable problems for absurdly high computational requirements of the algorithms that decide them In short, this book represents a theoretically oriented treatment of formal languages and their models with a focus on their applications. It introduces all formalisms concerning them with enough rigors to make all results quite clear and valid. Every complicated mathematical passage is preceded by its intuitive explanation so that even the most complex parts of the book are easy to grasp. After studying this book, both student and professional should be able to understand the fundamental theory of formal languages and computation, write language processors, and confidently follow most advanced books on the subject.