Book Description
A three-dimensional code for rotating blade-row flow analysis was developed. The space discretization uses a cell-centered scheme with eigenvalues scaling for the artificial dissipation. The computational efficiency of a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full-multigrid method. An application is presented for the NASA rotor 67 transonic fan. Due to the blade stagger and twist, a zonal, non-periodic H-type grid is used to minimize the mesh skewness. The calculation is validated by comparing it with experiments in the range from the maximum flow rate to a near-stall condition. A detailed study of the flow structure near peak efficiency and near stall is presented by means of pressure distribution and particle traces inside boundary layers. Arnone, A. Glenn Research Center NCC3-233; RTOP 505-90-5K...