Adaptability of Human Gait


Book Description

A large number of volumes have been produced summarizing the work on generation and control of rhythmic movements, in particular locomotion. Unfortunately most of them focus on locomotor studies done on animals. This edited volume redresses that imbalance by focusing completely on human locomotor behaviour. The very nature of the problem has both necessitated and attracted researchers from a wide variety of disciplines ranging from psychology, neurophysiology, kinesiology, engineering, medicine to computer science. The different and unique perspectives they bring to this problem provide a comprehensive picture of the current state of knowledge on the generation and regulation of human locomotor behaviour. A common unifying theme of this volume is studying the adaptability of human gait to obtain insights into the control of locomotion. The intentional focus on "adaptability" is meant to draw attention to the importance of understanding the generation and regulation of "skilled locomotor behaviour" rather than just the generation of basic locomotor patterns which has been the major focus of animal studies. The synthesis chapter at the end of the volume examines how the questions posed, the technology, and the experimental and theoretical paradigms have evolved over the years, and what the future has in store for this important research domain.




Neuro-motor control and feed-forward models of locomotion in humans


Book Description

Locomotion involves many different muscles and the need of controlling several degrees of freedom. Despite the Central Nervous System can finely control the contraction of individual muscles, emerging evidences indicate that strategies for the reduction of the complexity of movement and for compensating the sensorimotor delays may be adopted. Experimental evidences in animal and lately human model led to the concept of a central pattern generator (CPG) which suggests that circuitry within the distal part of CNS, i.e. spinal cord, can generate the basic locomotor patterns, even in the absence of sensory information. Different studies pointed out the role of CPG in the control of locomotion as well as others investigated the neuroplasticity of CPG allowing for gait recovery after spinal cord lesion. Literature was also focused on muscle synergies, i.e. the combination of (locomotor) functional modules, implemented in neuronal networks of the spinal cord, generating specific motor output by imposing a specific timing structure and appropriate weightings to muscle activations. Despite the great interest that this approach generated in the last years in the Scientific Community, large areas of investigations remain available for further improvement (e.g. the influence of afferent feedback and environmental constrains) for both experimental and simulated models. However, also supraspinal structures are involved during locomotion, and it has been shown that they are responsible for initiating and modifying the features of this basic rhythm, for stabilising the upright walking, and for coordinating movements in a dynamic changing environment. Furthermore, specific damages into spinal and supraspinal structures result in specific alterations of human locomotion, as evident in subjects with brain injuries such as stroke, brain trauma, or people with cerebral palsy, in people with death of dopaminergic neurons in the substantia nigra due to Parkinson’s disease, or in subjects with cerebellar dysfunctions, such as patients with ataxia. The role of cerebellum during locomotion has been shown to be related to coordination and adaptation of movements. Cerebellum is the structure of CNS where are conceivably located the internal models, that are neural representations miming meaningful aspects of our body, such as input/output characteristics of sensorimotor system. Internal model control has been shown to be at the basis of motor strategies for compensating delays or lacks in sensorimotor feedbacks, and some aspects of locomotion need predictive internal control, especially for improving gait dynamic stability, for avoiding obstacles or when sensory feedback is altered or lacking. Furthermore, despite internal model concepts are widespread in neuroscience and neurocognitive science, neurorehabilitation paid far too little attention to the potential role of internal model control on gait recovery. Many important scientists have contributed to this Research Topic with original studies, computational studies, and review articles focused on neural circuits and internal models involved in the control of human locomotion, aiming at understanding the role played in control of locomotion of different neural circuits located at brain, cerebellum, and spinal cord levels.










Vision and Motor Control


Book Description

Since the classic studies of Woodworth (1899), the role of vision in the control of movement has been an important research topic in experimental psychology. While many early studies were concerned with the relative importance of vision and kinesthesis and/or the time it takes to use visual information, recent theoretical and technical developments have stimulated scientists to ask questions about how different sources of visual information contribute to motor control in different contexts. In this volume, articles are presented that provide a broad coverage of the current research and theory on vision and human motor learning and control. Many of the contributors are colleagues that have met over the years at the meetings and conferences concerned with human movement. They represent a wide range of affiliation and background including kinesiology, physical education, neurophysiology, cognitive psychology and neuropsychology. Thus the topic of vision and motor control is addressed from a number of different perspectives. In general, each author sets an empirical and theoretical framework for their topic, and then discusses current work from their own laboratory, and how it fits into the larger context. A synthesis chapter at the end of the volume identifies commonalities in the work and suggests directions for future experimentation.




Measurement of Human Locomotion


Book Description

The importance of measurements for the proper assessment of human locomotion is increasingly being recognized. The fields of application encompass both healthy and pathological locomotion as encountered in rehabilitation medicine, orthopedics, kinesiology, sports medicine, and the like. Measurement of Human Locomotion provides an up-to-date des







Locomotion and Posture in Older Adults


Book Description

This book is an attempt to advance the discussion and improve our understanding about the effects of aging and movement disorders on motor control during walking and postural tasks. Despite these activities are performed daily, there is a high requirement of motor and neural systems in order to perform both tasks efficiently. Both walking and posture require a complex interaction of musculoskeletal and neural systems. However, the mechanisms used to control these tasks, as well as how they are planned and coordinated, are still a question of discussion among health professionals and researchers. In addition, this discussion is more interesting when the effects of aging are included in the context of locomotion and the postural control. The number of older individuals is 841 million in 2015, which is four times higher than the 202 million that lived in 1950. Aging causes many motor, sensorial and neural deficits, which impair locomotion and postural control in the elderly. The severity of this framework is worsened when the aging goes along with a movement disorder, such as Parkinson disease, Chorea, Dystonia, Huntington disease, etc. Therefore, the aim of this book is to highlight the influence of different aspects on planning, controlling and performing locomotion and posture tasks. In attempting to improve current knowledge in this field, invited authors present and discuss how environmental, sensorial, motor, cognitive and individual aspects influence the planning and performance of locomotor and postural activities. The major thrust of the book is to address the mechanisms involved in controlling and planning motor action in neurological healthy individuals, as well as in those who suffer from movement disorders or face the effects of aging, indicating the aspects that impair locomotion and postural control. In addition, new technologies, tools and interventions designed to manage the effects of aging and movement disorders are presented in the book.




Quantifying the Effect of Visual and Support Surface Oscillations on the Orthogonality of Balance Control During Gait


Book Description

Previous gait research has shown that ratio of anteroposterior (AP) and mediolateral (ML) step width variability reversed when the direction of progression changed from forward to sideways walking. Unfortunately, the study did not quantify the nature of this reversal over a range of progression angles. Additional research has shown visual perturbations during otherwise normal walking (Wurdeman et al. 2012; O'Connor & Kuo 2009). Therefore, our main research aim is to determine the contribution of both visual and proprioceptive feedback on the orthogonal relationship between gait and balance control during a range of conditions. Seventeen participants were subjected to seven conditions as they walked on a treadmill as the support surface, virtual reality optic flow, or both, oscillated in the transverse plane. Step length and step width variability provided the gait variability measures while variability in balance control was determined by calculating the variability of the center of mass (CoM) range of motion. The ML variability of the CoM was significantly higher during all oscillatory conditions compared to baseline. This supports reported comments from subjects who stated that it was hardest to maintain balance during walking in the oscillatory conditions, specifically the congruent condition more than any other. Subjects displayed the greatest variability increases when walking in an environment where the support surface and VR environment were providing matched, oscillating signals. When visual and proprioceptive signals are separated by a phase shift or if one of the signals is providing consistent information, it appears to be easier for subjects to maintain balance. Our results provide insight into how visual feedback while walking on a stable or unstable support surface affects gait and balance control during locomotion. Additionally, our results provide insight into how the orthogonality of gait and balance changes as the oscillation angle increases. This may have applications in the field of sensory feedback-based rehabilitation protocols.